
GLG Builder and
Animation Tutorial

GLG Toolkit
Version 4.3

Generic Logic, Inc.

In
tr

od
uc

tio
n

April 7, 2023
Software Release Version 4.3

Generic Logic, Inc.
6 University Drive 206-125
Amherst, MA 01002
USA
Telephone: (413) 253-7491
FAX: (413) 241-6107
email: support@genlogic.com
web: www.genlogic.com

Copyrights and Trademarks
Copyright © 1994-2023 by Generic Logic, Inc.
All Rights Reserved. This manual is subject to copyright protection.

GLG Toolkit, GLG Widgets, and GLG Graphics Builder are trademarks of Generic Logic, Inc.
All other trademarks are acknowledged as the property of their respective owners.

3

Table
of

ontents
C
GLG Builder and Animation Tutorial
1. Using GLG Builder ... 9
Using GLG drawings as widgets ..9

Creating a new widget...9
Menu Options for Creating a New Widget ..10

Creating objects...11

Editing GLG objects ...11

Selecting an Object and Changing Object Geometry...12

Object Geometry and Coordinate Systems...13

Choosing from Several Selected Objects ...13

Using Undo...14

Editing Object Properties ...14

Editing objects with the Edit Toolbox..16

Multiple Selection ..16

Editing Polygon Attributes..17
FillColor and EdgeColor attributes ..17
LineWidth and LineType attribute...18
FillType, OpenType and Shading attributes ..18
PointList attribute...19
Rendering attributes ...19

Defining resources for animation..19

Overview ..19

Using default attribute names for animation ..19

Prototyping Animation in the Builder ..20

Browsing Object Resources ...22

Assigning names to object attributes..22

Creating Resource Hierarchy ..25

Dynamic Resource Hierarchy...28

Using Multiple Component Instances ..29
Programming Example ..29

Using the Viewport Object ...30

Integrated Zooming and Panning..31

4 GLG Builder and Animation Tutorial
Using GLG Widgets and Palettes... 31

Using Palettes... 31

Adding Widgets to a Drawing ... 33
Adding Widgets to an Existing Drawing ...34

Editing Widgets.. 34

Animating Widgets with Data Using Resources.. 35
Code Sample to Animate Widgets Using Resources in the Program ..36
C#/.NET or Java...36
C/C++...36
JavaScript ...37
Prototyping Widgets in the Builder using Resources...37

Animating Widgets with Data Using Tags .. 38
Code Sample to Animate Widgets Using Tags in the Program ...40
C#/.NET or Java...40
C/C++...41
Prototyping Widgets in the Builder using Tags ...41

Tag Browser, Tag Object, TagName, TagSource and TagComment 41

Custom Tag Data Browser... 44

Mapping Tags in an Application at Run-Time .. 45

Loading Widget Drawings into the Builder... 45

Prototyping Widgets with Predefined Animation Commands... 46

Disabling Widget’s Interactive Behavior... 46

Saving the Drawing .. 46

Adding Geometrical Dynamics .. 46

Adding Attribute Dynamics.. 49

Predefined Attribute Dynamics.. 49

Using Stock Transformations... 51
Color dynamics ..51
Blinking..52
Text dynamics ..54
Numerical text dynamics..54
Formatted text dynamics ..54
List of strings dynamics ...54
Changing attribute range ..55

Editing Control Points and Attaching Control Point Dynamics... 56

Adding Extended Rendering Attributes ... 57

Gradient Fill ... 57

Fill Dynamics... 58

Shadows and Arrowheads.. 58

Text Boxes ... 58

Table of Contents 5
Using permanent groups ...59

Creating a group ...59

Editing Individual Objects in a Group..59

Editing All Objects in a Group...60

Adding and Deleting Objects from a Group...60

Exploding Permanent Groups...60

Object Layout and Alignment...61

Creating Layers of Objects ...62

2. Advanced Features of the GLG Builder ... 63
Using Constraints..63

Constraining Object Attributes ...63

Using Constrained Dynamics and Marked Transformations..64

Constrained Dynamics Example ..64

Using Marked Transformations..65

The Second Flavor of the Fill Dynamics ..66

Defining Object Tooltips ..66

Using MouseOver Highlight and MouseClick Feedback ...66

Attaching Custom Events and Commands..68

Using Editing Focus..69

Changing Viewport’s Font Tables ..69

3. GLG Widgets and Custom Objects ... 70
Using Custom Object Palette ..70

Custom Button..70

Custom Toggle ...70

Native Button Object..71

Native Toggle Object ...71

Native Slider Objects..71

3D Objects ..71

Process Control Objects ...72

Graph and Real-Time Chart Objects ..72

Adding New Objects to the Custom Object Palette ...72

4. Using GLG Drawings in a Program ... 73
Loading a Drawing into a C or C++ Program...73

6 GLG Builder and Animation Tutorial
Loading a Drawing into a Java Program .. 73

Loading a Drawing into a C#/.NET Program or GLG .NET Control .. 74

Loading a Drawing into an ActiveX Control ... 74

Loading a Drawing into a JavaScript Program Deployed on a Web Page 74

Supplying Data for Animation from a Program ... 75

Source Code Examples... 75

5. Creating the Animation Example’s Drawing 77
Creating a Drawing’s Viewport ...77
Creating a Circle Object ...77
Adding Color Dynamics...77
Adding the Move Dynamics ..78
Creating an Area Polygon ..78
Adding Buttons ..79
Testing the Tooltips..79
Using the Drawing ...79

6. Using GLG Real-Time Charts .. 80
Editing Chart Properties in the Builder.. 80

Loading Charts into the Builder ...80
Editing Chart Properties ...80
Editing Chart Plots and Axes ...81
Properties for Supplying Chart Data ..81

Editing Charts Using Resources .. 81

Prototyping the Chart’s Run-Time Behavior ... 82

7. Using Legacy GLG 2D and 3D Graph Widgets 83
Loading Graph Widgets into the Builder ...83

Common Graph Resources... 83
Data Supply Resources...83
Title resources: ...83
DataGroup Resources:..83
Axis Label Resources..84

Graphs with Multiple Data Groups .. 84

Graph Widget Animation Examples... 84

8. Using Containers and SubDrawing Objects 85
Container Object... 85

Creating a Template ...85
Creating a Container Object...86
Creating Container Instances ...87
Editing Container’s Template ..87

Table of Contents 7
SubDrawing Object...88

Included SubDrawing...88
Reusing a Template from the Previous Example...88
Creating a SubDrawing..88
Creating SubDrawing Instances and Editing the Template ...89
Fixed Size SubDrawings..90
Rebinding Attributes of a SubDrawing..91
Using Global Attributes ...92
Object Dynamics..92

File SubDrawing...92
Reusing a Template..93
Creating a SubDrawing..93
Accessing the Subdrawing’s Template ..94

Subdrawing File Dynamics ..94

Object Dynamics ..95
Creating a Template with Multiple Icons ..95
Creating a Subdrawing...96
Using ObjectPath for Object Dynamics...97

Palette SubDrawing ..97

SubWindow Object ..99

Controlling Template Cache...99

8 GLG Builder and Animation Tutorial

9

T1 GLG Builder and Animation Tutorial
Preface
This tutorial presents an overview of the tasks involved in creating animated drawings using GLG
and using them in a program. It is intended for users that prefer finding things by a trial and error
approach rather than reading the manual. Refer to the GLG documentation for further details.

The Tutorial starts with simple animation examples and moves on to examine more complex
features of the Toolkit (constraints, etc.). You won’t need these advanced features for your first
animations, but you may need them later on as you develop more elaborate drawings.

1. Using GLG Builder

Using GLG drawings as widgets
A GLG drawing is a collection of objects created and saved using the GLG Builder. This drawing
can be loaded into a C/C++, Java, C#/.NET, JavaScript or ActiveX program and animated with
the data supplied by a program. A drawing used in a program is referred to as the Widget
throughout this document.

Any GLG drawing must use a GLG viewport object to contain the drawing’s graphical objects. A
viewport is an encapsulation of the native window object that is used in the Toolkit to contain
graphical objects (polygons, circles, etc.) and to provide a drawing surface for them. A viewport
may also contain other nested viewports.

To use a drawing as a widget in a program, the drawing must have a viewport named $Widget. This
viewport will be displayed in a program when the drawing is used as a widget. A drawing created
and saved using the GLG Builder can then be used as a widget in a C/C++, Java, C#/.NET or
JavaScript program. It can also be used in a Java bean, .NET User Control and ActiveX Control.

Creating a new widget
When the GLG Builder is first started, it automatically creates a new widget (a viewport named
$Widget) and moves the editing focus into it.

To get to the top level, use the Hierarchy Up button from the Control Panel on the left, or
Traverse, Hierarchy Up from the main menu. You’ll see the outline of the $Widget viewport and an
informational comment at the top of the drawing (the comment can be deleted from the drawing).

To go back “into” the widget, first select the viewport by clicking on it with the left mouse button.
This will show control points in two corners and the center of the viewport, and the Status Panel at
the bottom will show the viewport’s name and object type: Name: $Widget, Type: VIEWPORT.

10 GLG Builder and Animation Tutorial
With the viewport selected, use the Hierarchy Down button from the Control Panel or Traverse,
Hierarchy Down from the main menu: this will bring you down into the viewport, so you can start
creating objects.

The next section describes menu options for creating a new widget. These options may be used to
create a new widget with a specific resize policy and aspect ratio.

Menu Options for Creating a New Widget

The File, New menu provides several options for creating a new widget: Widget (Resize and
Stretch), Widget (Resize, No Stretch), and Widget (Fixed Scale). Each option has a submenu to
choose the aspect ratio of the window where the drawing will be displayed at run time, such as 1:1,
4:3, 16:9. The aspect ratio option allows to select the X/Y ratio of the widget so that the widget may
be edited in the Builder using the aspect ratio that matches the window X/Y ratio that will be used
at run time. For example, if the drawing is going to be displayed in full screen mode on a 1600x900
pixel display, the 16:9 option should be selected to avoid distorting the widget appearance at run
time.

The Widget (Resize and Stretch) option creates a resizable widget that stretches the drawing to fit
the new widget size when the widget is resized. Stretching the drawing changes the size of objects
in the drawing, which may distort the shape of the objects if the widget’s X/Y aspect ratio changes.
For example, objects with circular shapes in the original drawing may become elliptical.

The Widget (Resize, No Stretch) option also creates a resizable widget that changes the size of
objects in the drawing when the widget is resized. However, resizing is done in a way that doesn’t
stretch the objects in the drawing, maintaining the objects’ original aspect ratio to preserve objects’
shape, so that circles remain circles and do not get stretched. If the widget’s X/Y aspect ratio
changes, the widget may have padding areas on the sides to preserve the aspect ratio of the drawing
displayed inside the widget.

The Widget (Fixed Scale) option creates a widget that does not stretch or resize the objects in the
drawing, but shows a smaller or bigger part of the drawing area when the widget is resized. This
option has a further submenu allowing you to specify the widget width and height in pixels. The
object geometry will be defined in pixels and the objects will appear at run time exactly the same
as they do in the Builder.

The widget created by default upon the Builder startup uses the option Widget, Resize and Stretch,
1:1 Width/Height Ratio, i.e. the objects in the drawing will resize and stretch to fit the entire window
when the widget is resized.

When a new widget is created using one of the options listed above, the Resizable, Stretch X/Y and Span X / Span Y
attributes of the widget viewport’s screen are set according to the selected widget creation option.

GLG Builder and Animation Tutorial 11
Creating objects
You can create graphical objects by selecting from a variety of drawing primitives in the Object
Palette on the left of the Drawing Area:

Object Palette

All buttons in the Builder have tooltips, so you can move the mouse over a button to find its exact
function if not sure.

To create an object, select one of the drawing primitives on the left (a Filled Polygon , for
example) and click several times in the drawing to define the polygon’s points. To finish defining
points, click the right mouse button on Windows, the middle mouse button on Linux/Unix, or the
Escape key on both platforms.

For different objects, a different number of control points may be required. For example, an arc will
require 3 control points.

Some object may also require entering additional information. For example, you’ll be asked to type
a text string when creating a text object.

When objects are being created or any other actions requiring user input are performed, a prompt
with additional instructions is displayed in the Prompt Area at the bottom.

All objects have to be created inside the widget ($Widget viewport).

Editing GLG objects
After an object is created, it may be edited in a variety of ways. To edit an object, it has to be
selected.

12 GLG Builder and Animation Tutorial
Selecting an Object and Changing Object Geometry

The simplest way to select an object is to click on it with the left mouse button. When an object is
selected, its control points and resize box are highlighted in the drawing, and its name and type are
displayed in the Status Panel at the bottom.

The move point appears at the object’s center, it’s a dynamically calculated point, provided for
convenience in the Builder only. You can reposition an object precisely by Shift+clicking on the
move point and using the arrows in the Object Move Point dialog. To avoid accidental movement
while you are selecting an object, use Shift+click to select the object. For less precise movements,
just drag the object with the mouse.

An 8-point resize box appears around an object. Use its points to resize the object. You can also flip
the object by dragging any of the resize points to the other side of the object’s box. Objects with
only one control point (marker, fixed text, etc.) can’t be resized, and resize points for these objects
appear desensitized (in a gray color). Shift+click on a resize point to position it precisely with the
arrows.

Object Selection: Control Points

A rotate point appears on the right side on the resize box. To rotate an object precisely by a
specified angle, Shift+click on the rotate point and use the arrows in the Object Rotation Point
dialog. For quicker or less precise rotation, drag the rotate point with the mouse.

Control points appear at the vertices or other important points. To change the shape of the object,
drag its control points with the mouse. You can also edit a control point precisely by Shift+clicking
on it and either using the arrows to move the point, or entering the point’s coordinates into the Value
field of the Control Point dialog. Refer to the next section for information on the coordinate system
used for the control point coordinates.

If the object has geometrical dynamics attached, the Dynamics’ Points (such as Start Point, End Point or Rotation Center)
may also be displayed depending on the setting of the Options, Selection Options, Control Points Display menu option.

To select an object with no fill (for example, an unfilled polygon), click on the object’s edge. The
FillType attribute controls this aspect of an object’s appearance.

GLG Builder and Animation Tutorial 13
Object Geometry and Coordinate Systems

For fixed scale widgets created with the Widget (Fixed Scale) menu option, object and control point
coordinates are defined in screen pixels. The origin of the coordinate system is located in the upper
left corner of the viewport’s window, with the Y axis pointing up and the X axis pointing to the right.
When the window is resized, more or less of the drawing area is shown, and the use of screen pixel
coordinates assures that the objects do not change their size or geometry.

For resizable widgets created with the Widget (Resize and Stretch) menu option, object and control
point coordinates are defined using the world coordinate system. The world coordinate system has
origin in the center of the viewport’s window, with the Y axis pointing up and the X axis pointing
to the right. The default extent of the world coordinate system is mapped to the extent of the
viewport’s window and does not change when the window is resized.

The default extent of the world coordinate system depends on the widget’s settings:

for widgets with 1:1 aspect ratio, the default extent is [-1000;+1000] in both X and Y directions.
for widgets with 4:3 aspect ratio, the X extent is [-1200;+1200] and the Y extent is [-900;+900]
for widgets with 16:9 ratio, the X and Y extents are [-1600;+1600] and [-900;900], respectively.

The world coordinate system is infinite, and the default extent defines only the mapping of the
world coordinate system to the window extent in the unzoomed state, and not the limit on the
coordinate values. The viewport’s default extent settings are stored in the SpanX and SpanY
properties of the viewport’s screen object.

The mapping of the world coordinate system’s default extent to the extent of the window is
automatically performed by the Toolkit and causes the drawing to be stretched to match the new
size of the window when the window is resized. For example, for a widget with 16:9 aspect ratio,
the point with world coordinates (1600,900) will always be positioned in the lower right corner of
the viewport’s window (if the drawing is not zoomed), regardless of the actual window size.

Since the drawing is always stretched to fit the new size of the window, the drawing’s aspect ratio
may change if the X/Y ratio of the window is changed. As a result, the objects in the drawing may
change their shape and circles may be drawn as ellipses.

Widgets created with Widget (Resize, No Stretch) menu option also use the world coordinate system
but maintain padding areas on the sides of the drawing as needed to preserve the drawing’s aspect
ratio when the window’s X/Y ratio changes. This preserves the shape of objects, making sure that
circles remain circles regardless of how the window is resized.

Choosing from Several Selected Objects

When several objects are located close to each other and it is difficult to select the object of your
choice, you can use the Shift key to help choose among several objects.

Shift-clicking in the drawing area with the left mouse button pops up a menu that allows you to
select an object out of several potentially selected objects.

If the Properties dialog is open, the arrow button in the upper right corner of the dialog may be used
to select an object when several objects are potentially selected.

14 GLG Builder and Animation Tutorial
Using Undo

The changes applied to the object’s geometry or attributes may be reverted by selecting Edit, Undo
options from the main menu, where the last operation is displayed at the top of the menu. For
example, try moving an object with the mouse. To undo the move operation, select Edit, Undo
Object Move or Stretch.

For multiple step undo, Edit, Undo History option may be used. For example, try resizing the object
using its resize box and then click and drag one of its control points with the mouse. To reverse one
or both of these operations, select Edit, Undo History, Undo Point Move to undo the point move
operation, and then select Edit, Undo History, Undo Object Move or Stretch to undo the resize
operation. Notice that the Undo History list displays performed operations in the reverse order, so
that the last operation appears at the top of the list.

Note: The order of undo steps is important and should be considered when undoing a complex sequence of
editing operations.

Editing Object Properties

You can use the Properties toolbar button to bring up the Selected Object Properties dialog.
Alternatively, you can use the right mouse button and select Properties from a popup menu, or
Object, Properties from the main menu.

Selected Object Properties Dialog

GLG Builder and Animation Tutorial 15
The Selected Object Properties dialog allows you to edit an object’s properties. Some generic
properties common for all objects (Name, Visibility, HasResources flag) are displayed at the top of
the dialog. Specific properties that depend on the type of the selected object are listed below.

Some properties, for example a FillColor property, have an ellipses button next to them. The
button indicates that the attribute is an object, and you can press it to bring a dialog with a color
palette and other options for editing the attribute.

Attribute Dialog

You can select a new fill color from a palette, or give this attribute a specific name that you can later
use to access the attribute from a program.

For other attributes, different attribute-related pallets will be shown: try selecting the ellipsis button
 for the LineWidth and LineType attributes.

The Type field of the Attribute dialog shows the type of the attribute object and may be D for double
numerical values, S for string values or G (geometrical) for XYZ or RGB triples used to represent
colors and control points in the Toolkit.

16 GLG Builder and Animation Tutorial
Editing objects with the Edit Toolbox

The Edit Toolbox can be used as an alternative to the Properties dialog for faster editing. Select a
polygon in the drawing and click on the Edit Toolbox toolbar button to bring the Edit Toolbox
to edit the polygon.

Edit Toolbox

You can edit various attributes, such as FillColor or LineWidth. For example, click on the LineWidth
icon and select a new line width from the line width palette. Notice that the text box at the bottom
of the dialog reflects the current setting for the selected attribute.

Only the attribute icons that are applicable to the selected object type are activated in the Edit
Toolbox, while the other icons are disabled. For example, for the polygon object, the FillColor and
EdgeColor icons are active, while the TextColor icons are disabled.

While the Properties dialog provides access to all attributes that are available for the selected object,
the Edit Toolbox displays attributes that are commonly used for a given object type. For example,
for a polygon object, you can edit such attributes as FillColor or EdgeColor via the Edit Toolbox,
however, the OpenType attribute is accessible only via the Properties dialog. Likewise, the
GradientType attribute can be accessed only through the Properties dialog, while the value of
GradientColor attribute can be edited using the Edit Toolbox. The Edit Toolbox is convenient for a
quick and easy editing of the visual appearance of objects, as well as editing multiple objects or all
objects in a group. For editing the non-visual entities, such as attribute names, HasResources flag
and others, the Properties dialog should be used.

Multiple Selection

Create three polygon objects using the Filled Polygon button. To select multiple objects for
editing, click and drag a rectangle to enclose the objects you want to edit. For example, click and
drag a rectangle to include all three polygons. This creates a temporary group that includes all
selected objects.

GLG Builder and Animation Tutorial 17
Notice that the Status panel at the bottom of the Builder’s window indicates that the selected object
is of type Group and its name is $TempGroup, which is a predefined name for a temporary group.
The resize box of a temporary group is shown as a dashed line. A temporary group is volatile and
will be discarded when it is unselected.

To include or exclude an object from the group, you can Ctrl+click on the object you want to delete
or add. For example, Ctrl+click on one of the polygons to delete it from the group. Ctrl+click on
the same polygon again to add it back to the group.

Let’s try to change FillColor of all three polygons. Click on the Edit Toolbox toolbar button to
bring the Edit Toolbox for the selected objects. Click on the FillColor button in the Edit Toolbox and
select a new color in the color palette. All selected objects will reflect the color change.

Press Escape to unselect the objects.

In the above example, a temporary group was created using a click and drag operation that defined
a rectangular area containing the objects to be selected. This option may be inconvenient in some
cases, when there are several intersecting objects and precise object selection is required.
Alternatively, a temporary group may be created by Ctrl+clicking on each object that needs to be
selected.

For example, Ctrl+click on one of the polygons with the left mouse button to select it. Ctrl+click
on another polygon, and then on the third one. All three polygons will be selected. Attribute editing
of all selected objects can be done using the Edit Toolbox, as described earlier.

Press Escape to unselect the objects.

Editing Polygon Attributes
In GLG, the polygon is a fundamental graphical primitive. Most other GLG graphical objects (arcs,
connectors, splines, etc.) inherit their attributes from the polygon object. As an example, let’s try
editing attributes of a filled polygon.

Click on one of the previously created polygon objects to select it, then click on the Properties
toolbar button to display the polygon’s Properties dialog for it.

FillColor and EdgeColor attributes

Click the ellipsis button for the FillColor attribute. A new dialog with caption FillColor
Attribute comes up, allowing to edit the attribute.

Select a new fill color from the color palette and notice the changes reflected in the graphics. The
Value field in the attribute dialog shows the new color as RGB values in the range [0; 1].

The Type field in the FillColor Attribute dialog shows G, indicating it is a G type (geometrical)
attribute, whose value is represented by a triplet of x,y,z values. In the case of a color attribute, such
as FillColor or EdgeColor, the triplet represents RGB values.

18 GLG Builder and Animation Tutorial
By default, the color RGB values are displayed in the [0;1] range, but it may be changed to the [0;255] range by setting
the ColorDisplay255 variable in the glg_config configuration file.

Using similar steps, try changing the polygon edge color using the EdgeColor attribute from the
Properties dialog.

The color may be assigned either from a color palette, or by entering new RGB values directly in
the Value field of the Attribute Dialog, or by typing RGB values directly into the corresponding text
box in the Properties dialog.

LineWidth and LineType attribute

The LineWidth attribute may be entered by typing a pixel line width value into the LineWidth text
box in the Properties dialog. To select a line width from a palette, click on the ellipsis button
for the LineWidth attribute and select a line width from a palette.

To select a line type from a palette, click on the ellipsis button for the LineType attribute.

For both LineWidth and LineType, the Type field in the attribute dialog displays D, indicating it is a
D type attribute whose value is a double value type.

FillType, OpenType and Shading attributes

The FillType attribute controls whether the polygon is drawn as an outline, fill or both. The attribute
has an option menu that allows selecting the fill type. The ellipsis button for the attribute may
also be used to pop up the Attribute dialog which allows naming the attribute, setting its flags and
attaching attribute dynamics.

The OpenType attribute controls whether the polygon draws the line connecting the first and last
polygon’s points, and may be edited in the same way as the FillType.

The Builder’s Object Palette has convenience icons for creating filled, unfilled, open and closed
polygons. However, the FillType and OpenType attributes may be changed after the polygon was
created as well.

The Shading attribute provides a way to selectively disable 3D shading of the polygon when it is
displayed in a viewport with the shading enabled (a Light object is added to a viewport). The
attribute can also be used to control what parts of the polygon are shaded: just the fill, or both the
fill and the edges. This attribute is not an object, so there is no ellipsis button for this attribute. The
only available attribute action is changing its value using the option menu.

All of the above attributes are of type D (double), as indicated in the Type field in each
corresponding attribute dialog, and have a numerical value as shown in the Value field in the
attribute dialog.

GLG Builder and Animation Tutorial 19
PointList attribute

The PointList item in the polygon properties is enabled in the Enterprise Edition of the Builder and
allows adding, deleting and rearranging the order of the polygon points after the polygon has been
created. Pressing the ellipsis button for the PointList displays the list of the polygon’s points,
with buttons for adding, deleting and rearranging the points’ order. Selecting a point in the list with
the mouse displays the Control Point dialog for editing the point’s value, name and flags.

Rendering attributes

The last item Add Rendering in the Properties dialog allows adding and editing optional rendering
attributes, such as gradient fill, cast shadows, arrowheads and fill dynamics. Refer to the Adding
Extended Rendering Attributes section on page 57 for details.

Defining resources for animation

Overview

Objects in the drawing are animated at run-time using resources, and defining resources for
animation is as simple as naming the objects.

A resource is simply a name given to an object or an object attribute. For example, naming a
polygon object Poly1 makes Poly1 visible as a resource providing a handle to the object and
allowing to access object attributes.

Each attribute object can be accessed as a resource using a default attribute name. For example,
FillColor attribute of a polygon object can be accessed using a resource name FillColor. Likewise,
LineWidth attribute can be accessed using a resource name LineWidth. A complete list of default
attribute names may be found in the Appendix C: GLG Object Attribute Table chapter on page 482
of the GLG Programming Reference Manual.

Once a graphical object is assigned a unique name, its attributes may be accessed using default
attribute names using a resource path. For example, fill color of a polygon named Poly1 may be
accessed using a resource path “Poly1/FillColor”.

An attribute may be also given a custom name, for example FillColor attribute may be named
BackgroundColor. Details of how resources are used and the purpose of assigning custom names to
attributes are described in the sections below.

Using default attribute names for animation

To animate attributes of a graphical object using default attribute names, a graphical object itself
has to be assigned a unique name.

Let’s name a polygon created in the previous section Poly1. Select a polygon object, bring its
Properties dialog and enter Poly1 into the Name field. Notice the Status panel at the bottom of the
Builder showing Poly1 in the Name field.

20 GLG Builder and Animation Tutorial
Press ESC to unselect the polygon, or click anywhere in the drawing’s empty space. The Status
panel at the bottom of the Builder shows Name: No name, Type: No object, indicating no object is
currently selected.

Select the Resources toolbar button or select Resources in the popup menu to display resources
of the entire drawing. The Resource Browser dialog with the Drawing Resources caption comes up,
populated with a list of resources for the entire drawing. It includes Poly1 resource, allowing to
access the polygon object using its name, i.e. using a resource Poly1. The “>>” symbol in the
Resource Browser dialog indicates that this is a composite resource containing subresources.

Double-click on the Poly1 >> item. The Resource Browser now shows a list of subresources for the
selected item. Clicking on any resource will bring a resource dialog for it allowing to edit the
resource value. For example, click on FillColor in the resource list and try changing the color using
the color palette. In the Drawing Resources dialog, notice the Selection field displaying the current
resource path “/Poly1/FillColor”.

Click on the “..” item in the list to go one level up, back to the resource list of the whole drawing,
i.e. resource list of the $Widget viewport. The Selection field in the Drawing Resources dialog now
shows “/”, indicating we are at the top level of the resource tree for the drawing.

Once an object has been named, its attributes can be animated at run-time using default attribute
names. For example, fill color of the polygon Poly1 can now be accessed at run-time using a
resource path “Poly1/FillColor”, as shown in the following code sample:

GlgSetGResource(viewport, “Poly1/FillColor”, r, g, b);

where Poly1 is the object name, and FillColor is the default attribute name for the FillColor
attribute.

Likewise, line width of the polygon Poly1 can be accessed at run-time using a resource path
“Poly1/LineWidth”, using a default attribute name:

GlgSetDResource(viewport, “Poly1/LineWidth”, new_value);

As shown in the above code samples, resources are strings that represent a resource path relative to
the specified GLG object. In the above example, the resource path is relative to the viewport object,
which is the top level drawing viewport.

A concept of a resource path is similar to the concept of a directory or file path on a filesystem: a
file path or subdirectory path is relative to the current directory, and ‘/’ character is used as a
separator to define a path. Likewise, a resource path is relative to the specified object and uses ‘/’
as a separator to specify a hierarchical resource path. More information on the resource hierarchy
is described below in the Creating Resource Hierarchy section on page 25.

Similar to the filesystem, the GLG Resource Browser uses the ‘..’ symbol allowing to go one level
up in the resource tree.

Prototyping Animation in the Builder

Drawing animation may be prototyped right in the editor using simulated data.

GLG Builder and Animation Tutorial 21
Select Start from the toolbar or Run, Start from the main menu to start the Run Mode. If the
editing focus was inside $Widget viewport, starting the Run Mode will bring you back to the top
level.

A dialog comes up with a sample animation command, which should be modified to specify a
resource path to be animated for the current drawing. For example, enter the following animation
command to animate line width of the polygon we named earlier Poly1:

$datagen -sin d 1 5 $Widget/Poly1/LineWidth

where:

$datagen
a GLG data generation utility used to animate the drawing with simulated data,

-sin
selects a sinusoidal waive to generate simulated data,

d
data type for simulation (d for double, s for string or g for geometrical),

1 5
data range for the generated data values,

$Widget/Poly1/LineWidth
a resource name to animate.

The $Widget prefix in the resource path is used since the polygon is inside the widget, i.e. the Poly1
polygon is a child of the $Widget viewport. Refer to the Creating Resource Hierarchy section on
page 25 for details.

Press OK to start animation and observe the polygon changing its line width in the graphics.

Quit Run Mode using the Stop toolbar button or the Run, Stop menu option.

The animation command may include multiple resources to be animated. For example, to animate
the polygon fill color with random RGB values (RGB range is from 0 to 1) in addition to the
polygon line width, click Start from the toolbar or Run, Start from the main menu, enter the
following animation command, and then press OK to start animation:

$datagen -sin d 1 5 $Widget/Poly1/LineWidth
 g 0 1 $Widget/Poly1/FillColor

Select the Stop toolbar button or Run, Stop from the main menu to quit prototyping.

For details on the $datagen generation utility and the supported parameters, refer to the The Data
Generation Utility chapter on page 404 of the GLG Programming Reference Manual.

22 GLG Builder and Animation Tutorial
Browsing Object Resources

The Resource Browser may be used to browse resources of individual objects. Click on the polygon
object in the drawing to select it. Bring up the Resource Browser dialog for the selected polygon,
using either the Resources toolbar button, the Resources popup menu option, or the Object,
Resources main menu option. A dialog comes up that lists resources for the selected polygon object,
showing default attribute names for the polygon attributes, as shown in the following image:

Selected Object Resources Dialog

Notice the “.” displayed in the Selection field and the “/” at the top of the resource list, indicating
the resource list includes resources relative to the currently selected object, i.e. a polygon.

The Resource Browser can be used to edit object attributes. For example, select FillColor from the
resource list, change the color using the FillColor Resource dialog and observe the changes
reflected in the graphics.

Close all dialogs.

Assigning names to object attributes

In the previous section, we animated line width and fill color of a named polygon Poly1 using
default attribute names LineWidth and FillColor.

While each attribute can be accessed using a default attribute name, an attribute can be assigned a
custom name. For example, LineWidth attribute may be named BorderWidth, or FillColor attribute
may be named BackgroundColor.

GLG Builder and Animation Tutorial 23
Select $Widget viewport with the mouse and press the Hierarchy Down button to go down into
it.

Select the Poly1 polygon and bring its Properties. Select the ellipsis button next to the
LineWidth attribute. A dialog with the LineWidth Attribute caption comes up, allowing to edit the
attribute value or assign a custom name to the attribute. Enter BorderWidth in the Name field of the
LineWidth Attribute dialog.This will make BorderWidth visible and accessible as a resource.

Bring up the Resource Browser dialog for the selected object Poly1, using either the Resources
toolbar button, the Resources popup menu option, or the Object, Resources menu option. The
Selected Object Resources dialog will show a list of resources for the selected object, including
LineWidth, but it will not include a resource BorderWidth.

Selected Object Resources Dialog

Close all dialogs.

Unselect the polygon, by clicking anywhere in the drawing’s empty space. The Status panel at the
bottom of the editor should show Name: No name, Type: No object.

Click on the Resources toolbar button or use the Resources popup menu option to bring up a
Resource Browser for the entire drawing.

24 GLG Builder and Animation Tutorial
The Drawing Resources dialog shows Poly1 and BorderWidth resources.

Entire Drawing Resources Dialog

Named
Objects

Notice that these resources appear at the same level of the resource tree, i.e. at the top level of the
drawing. Click on the BorderWidth resource and try changing its value by selecting a new line width
from the line width palette in the BorderWidth Resource dialog, and observe the changes in the
graphics.

Double-click on Poly1>> in the Drawing Resources dialog. The browser will show a list of default
attribute names for the Poly1 object, such as FillColor, EdgeColor, LineWidth. Click on LineWidth.
It will bring a resource dialog where the Name field shows BorderWidth, indicating that the
polygon’s LineWidth has also a custom name BorderWidth.

The polygon line width can now be changed in the program using either default attribute name
LineWidth or an assigned custom name BorderWidth. The following function calls will produce the
same result:

GlgSetDResource(viewport, “Poly1/LineWidth”, new_value);

or

GlgSetDResource(viewport, “BorderWidth”, new_value);

The first option uses a default attribute name LineWidth relative to the Poly1 resource. The second
option uses a custom resource name BorderWidth without any reference to Poly1. Notice that in
both cases, the specified resource path is relative to the viewport object, a top level viewport of the
drawing.

GLG Builder and Animation Tutorial 25
The use of a default attribute name LineWidth required a polygon object to be named, while the use
of a custom name BorderWidth made that resource visible at the top level allowing us to bypass the
Poly1 resource. Even if we didn’t name the polygon, we would still be able to set its line width using
a resource name BorderWidth.

Let’s prototype the drawing in the editor using a custom resource name. Select Start from the
toolbar or Run, Start from the main menu to start the Run Mode, enter the following animation
command and press OK to start animation:

$datagen -sin d 1 5 $Widget/BorderWidth

Select Stop from the toolbar or Run, Stop from the main menu to quit prototyping.

Following similar steps described above, assign a custom name BackgroundColor to the polygon’s
FillColor attribute: select the polygon, bring its Properties, click on FillColor and enter
BackgroundColor in the Name field. Unselect the polygon, bring up the Resource Browser and
notice the BackgroundColor resource appearing in the resource list, along with BorderWidth and
Poly1. To set the polygon fill color in the program, any of the following options may be used:

GlgSetGResource(viewport, “Poly1/FillColor”, r, g, b);

or

GlgSetGResource(viewport, “BackgroundColor”, r, g, b);

To prototype animation of the polygon’s fill color in the editor using the BackgroundColor resource,
select Start from the toolbar, enter the following animation command and press OK to start
animation:

$datagen -sin d 1 5 $Widget/BackgroundColor

Select Stop to quit prototyping.

Creating Resource Hierarchy
As you recall, both Poly1, BorderWidth and BackgroundColor resources were displayed at the same
level of the resource tree in the Resource Browser, even though logically resources for the polygon
line width and fill color belong to the polygon. This section will explain how to define the resource
hierarchy in which the BorderWidth resource and BackgroundColor belong to the Poly1 resource.

Make sure you are at the top level of the drawing so that Hierarchy Up button is disabled. Unselect
$Widget by clicking outside of it in the Drawing Area, so that the Status panel at the bottom displays
No name, No object.

Bring up the Resource Browser by using the Resources toolbar button or Resources in the popup
menu. The Drawing Resources dialog includes $Widget>> in the resource list.

26 GLG Builder and Animation Tutorial
The Resource Browser lists resources relative to the currently selected object, and since no object
is selected, the Resource Browser lists resources of the editor’s Drawing Area. Since we are at the
top level of the drawing hierarchy, with the $Widget viewport being inside the Drawing Area, its
name $Widget appears in the Drawing Area resource list.

Double-click on $Widget>> in the Drawing Resources dialog to see resources inside $Widget.
Resources Poly1, BorderWidth and BackgroundColor are displayed at the same level of the
resource hierarchy and are sub-resources of $Widget. The resource path for these resources would
be “$Widget/Poly1”, “$Widget/BorderWidth”, “$Widget/BackgroundColor”.

Select the widget viewport with the mouse, so that the Status panel displays Name: $Widget, Type:
VIEWPORT. Go down into the viewport using the Hierarchy Down button.

Select the Poly1 polygon and bring up its Properties dialog.

Set the polygon’s HasResources flag to YES.

Bring up Resources for the selected polygon. As mentioned above, the Resource Browser lists
resources relative to the selected object, so it now lists resources inside the selected Poly1 polygon.
The list includes BorderWidth and BackgroundColor as resources inside the polygon (these
resources now ‘belong’ to the polygon), along with the LineWidth and FillColor resources.

The HasResources flag defines a resource hierarchy for the object. If set to YES, all custom
attribute names are visible in the resource tree as subresources inside the object; in other words,
they become children of the object.

If HasResources is set to NO, the object is resource-transparent, so that custom attribute names
“bleed” through the object and appear as resources at the same level as the object in the drawing
resource tree.

For example, if Poly1 polygon has HasResources=YES, BorderWidth and BackgroundColor
become children of Poly1, so that the resource path would be “$Widget/Poly1/BorderColor” and
“$Widget/Poly1/BackgroundColor”. However, if Poly1 polygon has HasResources=NO,
BorderWidth and BackgroundColor will be on the same level as Poly1, so that the resource path
would be “$Widget/BorderColor” and “$Widget/BackgroundColor”, bypassing a reference to
thePoly1 resource.

The HasResources flag controls a resource hierarchy only for the assigned custom attribute names.
Default attribute names are always visible as subresources inside the object and do not depend on
the HasResources flag. For example, a default attribute name FillColor may be used only as a
subresource relative to the object, i.e. “$Widget/Poly1/FillColor” regardless of the HasResources
flag setting. If we were to access a resource “$Widget/FillColor”, it would be a fill color of the
viewport itself, not the polygon.

The default value of the HasResources flag is NO, meaning that the object is resource-transparent
by default.

GLG Builder and Animation Tutorial 27
As mentioned earlier in the tutorial, a resource path is a string representing a hierarchical resource
path relative to the specified GLG object. Similar to the directory or file path on a filesystem, a
resource path uses ‘/’ as a separator to specify a hierarchical path.

With the polygon’s HasResources flag set to YES, The following sample code may be used to
animate line width and fill color of the Poly1 polygon in the program:

GlgSetDResource(viewport, “Poly1/BorderWidth”, new_value);
GlgSetGResource(viewport, “Poly1/BackgroundColor”, r, g, b);

Create a copy of a polygon by using Edit, Full Clone from the main menu or pressing Control+L
accelerator key to create a copy of the polygon. Name the copy Poly2. Move the copy further away
from the first polygon.

Bring up the Resource Browser and open Poly1 by double-clicking on it to see its resources. Then
double-click on “..” to return back, and open Poly2. You can see that both Poly1 and Poly2 have
their own BorderWidth resources. You can now edit the BorderWidth resource of each polygon
individually and use “Poly1/BorderWidth” or “Poly2/BorderWidth” resource names to access the
line width of one polygon or another.

Try prototyping using the following animation script to animate the first polygon:

$datagen -sin d 1 50 $Widget/Poly1/BorderWidth

The following script animates the second polygon:

$datagen -sin d 1 50 $Widget/Poly2/BorderWidth

However, in the previous section we were also able to animate line width and fill color of the
polygon using default attribute names with resource paths “Poly1/LineWidth” and
“Poly1/FillColor”, so what would be the advantage of assigning custom names BorderWidth and
BackgroundColor to the attributes in addition to having default attribute names?

Consider a scenario of creating a custom component composed of a group containing several
graphical objects, each having their own resources. In spite of having multiple graphical objects
representing a component, it would be desirable to be able to use the component as a single entity
with configurable parameters visible at the top level of the component itself. For example, consider
having a valve widget, containing a valve symbol and a label to display a valve ID. A valve widget
should have resources such as State and ID visible at the top widget level, so that we could create
multiple valves, name them Valve1, Valve2, etc. and configure each valve using resources names
“Valve1/State”, “Valve1/ID” and “Valve2/State”, “Valve2/ID”.

Such components with a flexible resource hierarchy may be created by assigning custom attribute
names to necessary attributes and using the HasResources flag for the objects inside the component
to control where resource names are visible relatively to the component object itself.

More details and examples are described in the following section.

28 GLG Builder and Animation Tutorial
Dynamic Resource Hierarchy

While the object hierarchy is fixed and is completely determined by the parent-child relationship
between objects, the HasResources flag makes it possible to decouple the resource hierarchy from
the object hierarchy, making resource hierarchy dynamic and configurable.

The HasResources flag makes it possible to define the place in the resource hierarchy where
resources with custom names appear, thus creating custom resource hierarchies with desired
resource structure. For example, if several objects are assembled together in a group to represent a
custom component, the objects’ HasResources flags may be used to make resources that control
important properties of each object being visible at the level of the component (the group level),
instead of being “hidden” inside of the individual objects in the group.

The following steps create a sample component and arrange the objects’ HasResources flags to
create a desired resource hierarchy.

Create a rectangle, bring Properties and name it Box using the Name field. Click on the ellipsis next
to the FillColor property and name it BackgroundColor in the FillColor Attribute dialog.

Create a fixed text object by clicking on the Fixed Text button in the Object Palette, position
it in the middle of the rectangle, enter Label in the text string dialog and press OK to finish. The
Status panel at the bottom shows Name: No name, Type: TEXT.

Bring Properties for the text object and name the object LabelObject. Click on ellipsis next to the
TextString property and name it LabelString in the String Attribute dialog.

Group together the rectangle and the text object by clicking on the Permanent Group icon , then
click and drag to enclose the rectangle and the text object in the group.The Status panel at the bottom
shows Name: No name, Type: GROUP.

Bring Properties for the group object and name the group CustomLabel. Check the HasResources
toggle to set HasResources=YES for the group.

The Status panel at the bottom should show Name: CustomLabel, Type: GROUP.

With the group still being selected, bring the Resource Browser. It will list the following resources:
Box, BackgroundColor, LabelObject, LabelString, as well as other resources. We can set the
background color and label string of the CustomLabel component using
“CustomLabel/BackgroundColor” and “CustomLabel/LabelString” resource paths.

Since the Box and LabelObject have HasResources=NO, their named resources BackgroundColor
and LabelString “bleed” through and appear at the top level of the CustomLabel component, making
them parameters of the component, instead of being parameters of the box and label objects.

If the Box and LabelObject had HasResources=YES, the BackgroundColor and LabelString
resources would appear inside the box and label objects: “CustomLabel/Box/BackgroundColor”
and “CustomLabel/LabelObject/LabelString”. Such long resource paths would be unnecessary and
inconvenient for editing the component.

GLG Builder and Animation Tutorial 29
Using Multiple Component Instances

The CustomLabel component created in the previous section may be copied to create multiple
instances of a custom label. Each copy will have the same resource hierarchy with
BackgroundColor and LabelString resources that are unique for each instance. To differentiate
between instances, each copy should have a unique name.

For example, select the CustomLabel component created in the previous section and make several
copies using either Ctrl+L or the Edit, Full Clone menu. Position each copy and name them
CustomLabel1, CustomLabel2, CustomLabel3, etc.

Press ESC to unselect any selected object. The Status panel at the bottom should show Name: No
name, Type: No object.

Bring the Resource Browser for the whole drawing. It will show all instances as resources:
CustomLabel1>>, CustomLabel2>>, CustomLabel3>>, etc.

Double-click on CustomLabel2>>. Select BackgroundColor with a single-click and change the
color using the color palette. Select LabelString and change it.

Double-click on “..” to go back to the top level, and repeat the previous steps for CustomLabel3.

Programming Example

Since the resource hierarchies of all instances are identical, the same code or a function may be used
to supply a value (such as a string, color, or a numerical value) to any instance at run time. For
example, the following function may be used with the GLG Standard API to set the label string of
an instance specified by the instance_name parameter:

// instance_name may be “CustomLabel1”, “CustomLabel2”, etc.
void SetLabel(GlgObject drawing, char * instance_name, char * label)
{

char * res_name =
GlgConcatResNames(instance_name, “LabelString”);

GlgSetSResource(drawing, res_name, label);
GlgFree(res_name);

}

If the Intermediate or Extended API is used, the following code may be used to set the label without
a need to create and then free a res_name string:

void SetLabel(GlgObject drawing, char * instance_name, char * label)
{

GlgObject instance =
GlgGetResourceObject(drawing, instance_name);

GlgSetSResource(instance, “LabelString”, label);
}

30 GLG Builder and Animation Tutorial
Using the Viewport Object
A viewport object is a GLG encapsulation of a window, which may be used to draw other graphical
objects. In addition, the viewport object provides its own coordinate system, resizing all objects in
the viewport when the viewport is resized. The viewport may be used as a container holding
functionally different parts of the drawing, or as a component containing other graphical objects (a
graph, control, etc.). Viewports may be used recursively, with one viewport containing a hierarchy
of several nested viewports, each containing its own drawing.

To create a viewport, select the Viewport icon from the drawing primitives, then click twice in
the drawing area to define the position of the viewport’s corners. After the viewport was created and
selected, use the Hierarchy Down button from the Control Panel or Traverse, Hierarchy Down
from the main menu to go “down” into the viewport. You can add any objects to the viewport by
creating them while being inside the viewport, then use the Hierarchy Up button from the
Control Panel or Traverse, Hierarchy Up from the main menu to go back up to the previous level.

The viewport has its own coordinate system with the origin at the center of the viewport and the Z
axis perpendicular to the plane of the viewport’s rectangle. The corners of the viewport are [-1000,-
1000] and [1000, 1000] in the viewport’s coordinate system, and this mapping is maintained when
the viewport is resized. The viewport’s coordinate system is used to interpret the coordinates of any
objects drawn in the viewport. When the viewport is resized, all objects within are resized as well.

Panning and zooming affects the mapping of the viewport’s coordinate system. For example, if the
viewport is zoomed in to by a factor of 2, the corners of the viewport will correspond to (-500 -500)
and (500 500) instead of (-1000 -1000) and (1000 1000) without zooming. The screen object
associated with each viewport has additional SpanX and SpanY attributes that control the viewport’s
coordinate extent and coordinate mapping. Refer to the Screen chapter on page 96 of the GLG
User’s Guide and Builder Reference Manual for details.

Setting the editing focus provides a convenient shortcut for quick access to objects inside the
viewport without traversing down the hierarchy. To move the focus inside the viewport, click on the
Set Focus button from the Control Panel and click on the viewport, or simply Ctrl-Shift-click
on the viewport. The viewport will be highlighted with thick borders to show it has the editing
focus, and you can edit, add or delete objects inside the viewport (Note: The Hierarchy Down
button is disabled while the focus is inside the viewport). When finished, click on the Main Focus

 button in the Control Panel, or Ctrl-Shift-click outside the viewport to return the focus to the
main drawing area.

If a viewport is part of a group, the first Ctrl-Shift-click on a viewport selects it, and the second Ctrl-Shift-click moves
focus inside the viewport.

Note: Set Focus should only be used for quick access to viewport’s objects for minor editing. Use
Hierarchy Down as the primary way to access objects inside the viewport.

The viewport’s FillColor, EdgeColor and LineWidth attributes control the background color, border
color and border width of the viewport. The viewport’s screen ShadowWidth attribute controls
drawing the shadowed bevels around the viewport’s borders. The sign of the ShadowWidth controls
the type of the bevels: raised shadows for positive values and depressed shadows for negative
values.

GLG Builder and Animation Tutorial 31
Integrated Zooming and Panning
In the Builder, the vertical and horizontal scrollbars on the sides of the Drawing Area can be used
to scroll the drawing. The drawing can also be scrolled by Ctrl+clicking and dragging it with the
mouse. To start dragging, the click should happen in an empty area of the drawing. If the whole
drawing is completely occupied by objects, the dragging may be started by selecting the Scroll by
Dragging option of the View menu, then clicking anywhere in the drawing and dragging the mouse.

If the drawing needs to be scrolled at run time, the integrated zooming and panning features of a
viewport object can be used. Every viewport supports integrated scrollbars for automatic panning
that are controlled by the viewport’s Pan attribute. To enable the scrollbars for a viewport, set its
Pan attribute to Pan XY using the Properties dialog. The scrollbars allow the user to scroll the
drawing at run time when it extends beyond the boundaries of the viewport’s visible area. The
scrollbars may be enabled for any viewport object that requires them. If required, only one of the
scrollbars can be enabled by selecting the Pan X or Pan Y setting of the Pan attribute.

If the viewport’s ZoomEnabled attribute is set to YES, the viewport object also handles zoom and
pan accelerators. For example, “i” will zoom into the viewport, “o” will zoom out and “n” will
reset zooming and panning. Scrolling the drawing with the mouse using the Ctrl-drag sequence is
also supported. Refer to the Viewport chapter on page 85 of the GLG User’s Guide and Builder
Reference Manual for a complete list of zoom and pan accelerators. If ZoomEnabled is set to NO,
the accelerator keys are disabled, but the integrated zooming and panning is still available for use
programmatically.

To try integrated zooming and panning, draw a few objects inside a viewport with panning enabled,
then start the prototyping mode by pressing the Start toolbar button or selecting Run, Start from
the main menu and entering an empty run command. Click on the viewport with the mouse to move
the keyboard focus to the viewport, then press “i” several times until the objects displayed in the
viewport extend beyond the visible area of the viewport’s window. Use scrollbars or the Ctrl-drag
sequence to pan, then press “n” to reset zooming and panning, and press the Stop toolbar button
to return to the edit mode.

Refer to the Integrated Zooming and Panning chapter on page 230 of the GLG User’s Guide and
Builder Reference Manual for details.

Using GLG Widgets and Palettes

Using Palettes

The Palettes menu provides access to palettes of pre-built widgets and objects. You can use these
objects by simply dragging them from the palette and dropping them into the drawing. The widgets
have built-in dynamics and resources to control their appearance. To simplify widget customization,
the majority of the widgets also have built-in public properties that list the most essential resources
of each widget.

32 GLG Builder and Animation Tutorial
The Public Properties dialog lists the most commonly used widget parameters and is the primary
way for editing prebuilt GLG Widgets (except the 2D and 3D Graph widgets, which are edited via
resources). The dialog may be accessed via the Public Properties toolbar button , the Public
Properties popup menu option, or the Object, Public Properties menu option.

To reduce cluttering, public properties of widgets with a large number of properties are grouped into
categories, such as Colors, ValueLabel, etc. The Public Properties dialog for these widgets will
display buttons that provide access to each category’s properties. Refer to GLG Widgets Reference
Manual for detailed information on widget properties.

The use of public properties makes the widget editing easier and more intuitive for the end user.
This is especially important in the GLG HMI Configurator, allowing system integrators to provide
OEM ready GLG widgets that can be easily deployed to the end users.

The Resource Browser can also be used to browse and edit widget resources. While the Public
Properties dialog provides convenient access to the most commonly used widget parameters, the
Resource Browser provides access to all widget resources. The resource path displayed in the
Resource Browser when browsing widget resources may be used to access the resources via API at
run time.

To access widget parameters via resources in a program, each widget should be assigned a unique
name, using either the Properties dialog or the Public Properties dialog. For example, to set the
Value resources of a dial widget in the program, name the dial MyDial and set the value in the
program as follows:

Java and JavaScript

SetDResource(“MyDial/Value”, value);
Update();

C#

SetDResource(“MyDial/Value”, value);
UpdateGlg();

C/C++

GlgSetDResource(viewport, “MyDial/Value”, value);
GlgUpdate(viewport);

Alternatively, widgets may be animated in the program using tags instead of resources. The
advantage of using tags is that each widget doesn’t have to be named, since tags are global and
visible at the top level of the drawing.

Refer to the Animating Widgets with Data Using Tags section on page 38 and the Animating Widgets
with Data Using Resources section on page 35 for information on how to use either tags or resources
to animate the drawing with real-time data.

Possible widget palettes that come with the GLG Toolkit include Real-Time Charts, 2D Graphs, 3D
Graphs, Controls, Avionics, Process Control Symbols, Electrical and Electronic Circuit Symbols,
and Special Widgets palettes. The GLG Widget Catalog containing images of all GLG palettes may
be found on the GLG web site at http://www.genlogic.com/widgets.html.

GLG Builder and Animation Tutorial 33
The Palettes menu in the Community Edition / Demo version of the GLG Toolkit lists all available
palettes of pre-built objects, saved in the demo format. The GLG Evaluation version contains only
palettes for Custom Objects and Custom Widget Samples. The Commercial version of the GLG
Toolkit includes palettes of widget sets that were purchased, saved in a production (non-demo)
format. If no widget sets were included in the commercial GLG license, only the palettes for Custom
Objects and Custom Widget Samples are installed by default.

For example, to display a palette of push buttons, use a menu option Palettes, Push Buttons. To add
a button to a drawing, click on a button icon in the palette. A selected button widget will be added
to the drawing, positioned in the center of the drawing by default. You can move the widget by
dragging it with the mouse, positioning it in the drawing as needed. The widget may be also resized
using its resize handles. To assign a unique name to a widget in order to access widget’s resources
at run-time, bring its Properties dialog and enter a unique name in the Name field. Alternatively,
bring Public Properties for the button and enter a unique name in the Name field. The widget
parameters may be edited using the Public Properties dialog. More detailed information, as well as
a step by step example, are included below.

By default, clicking on a widget in a palette adds it to the drawing and positions it at the center. The
Palettes, Manual Widget Positioning menu option can be checked to allow the user to define the
widget’s position by clicking in the drawing area. The ManualWidgetPositioning parameter may be
set to 1 in the GLG configuration file (glg_config or glg_hmi_config) to change the default
behavior.

Adding Widgets to a Drawing

To create a new drawing containing several widgets, select File, New, Widget main menu option,
and choose any of the suboptions for now. For example, select File, New, Widget (Resize and
Stretch), 1:1. For more information on the suboptions, including resizable vs. non-resizable
drawings may be found in the Menu Options for Creating a New Widget section on page 10.

For example, follow the steps below to create a new dashboard drawing.

Select File, New, Widget (Resize and Stretch), 1:1. This will create a new viewport named $Widget
and will place editing focus inside it.

Select Palettes, Value Display.

Click on a Value Display widget of your choice in the palette. This will add a selected widget to the
drawing as a child of the $Widget viewport and position the widget in the center of the drawing by
default.

Move the widget with the mouse and position it in the drawing as needed. The widget may be also
resized using the resize handles.

The default behavior of the new widget being positioned in the center of the drawing may be overridden using the Palettes,
Manual Widget Positioning menu option. If the option is checked, you would need to click in the drawing with the mouse
to add a new widget at the specified location.

34 GLG Builder and Animation Tutorial
In order to access the widget’s resources in a program, each widget should be assigned a unique
name. While the widget is selected, click on the Properties toolbar button or select Properties
in the popup menu. This will bring the Properties dialog.

Assign a unique widget name by entering LoadValueDisplay in the Name field.

Add another widget to the drawing, for example a dial. Select Palettes, Dials and Meters, and click
on any dial of your choice. It will add a dial to the drawing.

Position the dial in the drawing with the mouse.

Click on the Properties toolbar button or select Properties in the popup menu.

Enter PressureDial in the Name field to assign a unique name to the dial.

Optional: Repeat the above few steps to add another dial and name it VoltageDial.

Adding Widgets to an Existing Drawing

To add a widget to an existing drawing, load the drawing, select its top-level viewport, use the
Hierarchy Down button to go “down” into it, then use a palette to add widgets.

Editing Widgets

GLG Widgets are highly configurable. Any aspect of the widget appearance or behavior may be
configured by editing its parameters, as well as editing geometry of the objects inside the widget.

The widget can be configured using one of the following methods:

• Public Properties can be used to configure the most common widget parameters using the
Public Properties dialog for simplified editing.

• Resources provide access to a complete list of all widget parameters via the Resource
Browser.

While the Resources dialog lists all available widget resources, many of the resources are located
deep inside the resource hierarchy, which may requires traversing several levels of resource
hierarchy to access a particular resource. The Public Properties dialog, on the other hand, lists the
most commonly used widget properties as a flat list, allowing fast and easy access to widget
parameters. Some properties in the dialog are sorted into categories for easier editing. Regardless
of whether a widget was edited using resources or public properties, the resulting saved drawing
will be the same.

For example, let’s edit the dashboard drawing created above using the following steps.

Select the LoadValueDisplay widget by clicking on it with the mouse. The current selection is
reflected the Status panel at the bottom of the Builder that displays Name: LoadValueDisplay.

Click on the Public Properties toolbar button or select Public Properties in the popup menu.

GLG Builder and Animation Tutorial 35
Try changing the widget’s Description, Units and Value properties and observe the changes
reflected in the graphics. If the selected widget has the AlarmStatus property, try changing its value
between 0, 1 and 2, and observe the changes of the widget colors.

Click on the Colors button to access the widget’s color properties. Property names starting with
ValueColor and BGColor define the value label and background colors used for each of the alarm
states. If present, the NumStatusColors property controls the number of alarm states and the number
of corresponding alarm colors.

Click on the DescriptionLabel, UnitLabel or ValueLabel buttons to access label properties of the
corresponding labels, such as FontSize, FontType, etc.

Select another widget in the drawing, for example, click on the PressureDial widget. Notice that the
Status panel at the bottom of the Builder displays Name: PressureDial, and the Public Properties
dialog is automatically updated to display parameters of the newly selected object, i.e.
PressureDial. The Name field in the Public Properties dialog shows PressureDial.

Change parameters of the dial, such as Low, High or Units, and observe the changes in the graphics.
For example, set Low to 0, High to 100, Value to 70, Units to PSI.

Click on the VoltageDial to select the object. Notice that both the Name field in the Public
Properties dialog, as well as in the Status panel at the bottom of the Builder change to VoltageDial.

Using the Public Properties dialog, change parameters of the dial. For example, set Low to 0, High
to 15, Value to 12, Units to V.

For comparison, bring the Resources dialog for the selected dial, using either the Resources
toolbar button or Resources in the popup menu. Notice the difference between the list of resources
in the Resources dialog and the list of public properties in the Public Properties dialog. A list of
resources is longer and presents a full hierarchical resource list for this widget, while a list of public
properties is limited to a subset of resources, presenting most commonly used widget parameters.

Save the drawing using the File, Save As menu option. Use dashboard.g as the drawing filename.

In the GLG HMI Configurator, which is a simplified editor meant to be used by the end users for creating or editing
drawings, the Properties button displays the Public Properties dialog for objects that have public properties defined. For
objects that do not have public properties, the Properties button activates the Properties dialog that displays default object
properties. Most GLG Widgets have public properties defined, and the Properties toolbar button (or the Properties popup
menu option) activates the widget’s Public Properties dialog.

Refer to the GLG Widgets Reference Manual for detailed information on different GLG widgets
and their properties.

Animating Widgets with Data Using Resources

Widget resources, such as Value, Low or High, may be used to set initial values and animate the
widget with dynamic data at run-time. For example, the code samples below show how to access
resources in the dashboard drawing we created in the previous section, dashboard.g.

36 GLG Builder and Animation Tutorial
Code Sample to Animate Widgets Using Resources in the Program

C#/.NET or Java
// Initialization.
void Initialize()
{

// Set Low/High data range for the dials, if different from
// the values assigned at design time in the editor.
SetDResource(“PressureDial/Low”, 0.0);
SetDResource(“PressureDial/High”, 100.0);

SetDResource(“VoltageDial/Low”, 0.0);
SetDResource(“VoltageDial/High”, 15.0);

}

// Periodic updates.
void UpdateDrawing()
{

// Obtain new values for load, pressure and voltage.
double load = get_load();
double pressure = get_pressure();
double voltage = get_voltage();

// Push data into graphics.
SetDResource(“LoadValueDisplay/Value”, load);
SetDResource(“PressureDial/Value”, pressure);
SetDResource(“VoltageDial/Value”, voltage);

// Refresh the display.
Update(); // Use UpdateGlg() for C#

}

C/C++
// Initialization.
void Initialize()
{

// Set Low/High data range for the dials, if different from
// the values assigned at design time in the editor.
GlgSetDResource(viewport, “PressureDial/Low”, 0.);
GlgSetDResource(viewport, “PressureDial/High”, 100.);

GlgSetDResource(viewport, “VoltageDial/Low”, 0.);
GlgSetDResource(viewport, “VoltageDial/High”, 15.);

}

// Periodic updates.
void UpdateDrawing()
{

double load, pressure, voltage;

// Obtain new values for load, pressure and voltage.
load = get_load();
pressure = get_pressure();
voltage = get_voltage();

GLG Builder and Animation Tutorial 37
// Push data into graphics.
GlgSetDResource(viewport, “LoadValueDisplay/Value”, load);
GlgSetDResource(viewport, “PressureDial/Value”, pressure);
GlgSetDResource(viewport, “VoltageDial/Value”, voltage);

// Refresh the display.
GlgUpdate(viewport);

}

JavaScript
// Initialization.
void Initialize()
{

// Set Low/High data range for the dials, if different from
// the values assigned at design time in the editor.
viewport.SetDResource(“PressureDial/Low”, 0.0);
viewport.SetDResource(“PressureDial/High”, 100.0);

viewport.SetDResource(“VoltageDial/Low”, 0.0);
viewport.SetDResource(“VoltageDial/High”, 15.0);

}

// Periodic updates.
var load,pressure, voltage;
void UpdateDrawing()
{

// Obtain new values for load, pressure and voltage.
get_new_values();

// Push data into graphics.
viewport.SetDResource(“LoadValueDisplay/Value”, load);
viewport.SetDResource(“PressureDial/Value”, pressure);
viewport.SetDResource(“VoltageDial/Value”, voltage);

// Refresh the display.
Update();

}

Prototyping Widgets in the Builder using Resources

The drawing may be prototyped in the editor by supplying simulated data for widget resources.

Select the Start toolbar button or the Run, Start main menu option.

Supply the following animation command:

$datagen -sin d 0 100 $Widget/LoadValueDisplay/Value
-sin d 0 100 $Widget/PressureDial/Value
-sin d 0 15 $Widget/VoltageDial/Value

Click OK to start animation.

The widgets will update, showing simulated dynamic data.

38 GLG Builder and Animation Tutorial
Click on the Stop toolbar button or select the Run, Stop main menu option to quit prototype
mode. Note that the editing focus will be at the top level of the drawing. Click on the $Widget
viewport to select it, then click on the Hierarchy Down button to go down into the viewport and
continue with the steps described below.

Animating Widgets with Data Using Tags

Any object or widget in the drawing may be animated by pushing dynamic data values to an object
attribute, using one of the following methods:

• using the attribute’s resource name

• using a tag attached to the attribute.

While resources are hierarchical, tags are global and provide a way to access attributes using a flat
structure. The use of resources require assigning a unique name to each widget in order to animate
the widget at run-time, as described in the previous section. For example, we had to assign a unique
name to a dial widget, such as VoltageDial, in order to set the dial value at run-time:

SetDResource(“VoltageDial/Value”, voltage);

However, the use of tags instead of resources shields an application from the necessity to be aware
of the resource hierarchy of the drawing, and doesn’t require assigning each widget a unique name.
A tag is added to an attribute in a form of a tag object. For example, if a tag Voltage is assigned to
the Value resource of the VoltageDial, the dial may be animated at run-time as follows:

SetDTag(“Voltage”, voltage);

Notice that there is no reference to the dial name, only a tag ID Voltage is used to animate the dial.

The steps below describe how to assign tags to the widget resources, using either the Resources
dialog or Public Properties dialog. The end result will be the same.

Assuming the dashboard.g drawing is loaded and the editing focus is inside $Widget viewport, click
on the VoltageDial widget to select it.

Bring Public Properties for the widget, using the Public Properties toolbar button or the Public
Properties popup menu option. Notice the Name field showing VoltageDial.

GLG Builder and Animation Tutorial 39
Click on the ellipsis button for the Value attribute. It will bring the Value Public Properties
dialog shown below.

Value Public Property / Resource Dialog

Click on the Add Tag button in the Value Public Properties dialog. It will bring the Data Tag dialog,
representing a tag object added to the Value attribute. If the widget’s Value attribute already has a
tag, the button will be labelled Edit Tag. Click on the button to edit the tag.

Tag object has several attributes of its own, including TagSource, TagName, TagComment.
TagSource is the most essential attribute and points to a data source variable, or a Tag ID, in the
application’s data acquisition system. TagSource provides a data connectivity link between the
graphics and real-time data. More details on the tag object attributes may be found in on the Tag
Browser, Tag Object, TagName, TagSource and TagComment section on page 41.

In the Tag Source field, enter a data source name, or a Tag ID, known to your application. For
example, enter Voltage, as shown below:

Data Tag Dialog

40 GLG Builder and Animation Tutorial
In the Public Properties dialog, notice the T button next to the Value property. Clicking on the T
button will open the Data Tag dialog for this property, allowing to edit or delete the tag.

Close all dialogs.

Let’s add a tag to the Value attribute of the PressureDial and use the Resources dialog this time.
Click on the PressureDial widget to select it.

Click on the Resources toolbar button or select Resources in the popup menu.

Select the Value resource. It will bring the Value Resource dialog.

Click on the Add Tag button in the Value Resource dialog. It will bring the Data Tag dialog. If the
widget’s Value resource already has a tag, the button will be labelled Edit Tag. Click on the button
to edit the tag.

In the Tag Source field, enter a data source name, or a Tag ID, known to your database for the
pressure value. For example, enter Pressure.

Close the Data Tag dialog. Notice that in the Value Resource dialog, the Edit Tag button is enabled,
allowing to edit the tag.

Let’s add a tag to the Value attribute of the LoadValueDisplay widget. Click on the
LoadValueDisplay widget to select it. Add a tag Load to the Value resource, using either the
Resources dialog or Public Properties dialog. For example, bring Public Properties, click on the
ellipsis button for the Value attribute, click on Add Tag, and enter Load in the Tag Source field.

Close all dialogs.

Save changes in the drawing dashboard.g, using the Save toolbar button or File, Save main
menu option.

Code Sample to Animate Widgets Using Tags in the Program

C#/.NET or Java
// Periodic updates.
void UpdateDrawing()
{

// Obtain database values for load, pressure and voltage.
double load = get_load();
double pressure = get_pressure();
double voltage = get_voltage();

// Push data into graphics.
SetDTag(“Load”, load);
SetDTag(“Pressure”, pressure);
SetDTag(“Voltage”, voltage);

// Refresh the display.
Update();

}

GLG Builder and Animation Tutorial 41
C/C++
// Periodic updates.
void UpdateDrawing()
{

double load, pressure, voltage;

// Obtain database values for load, pressure and voltage.
load = get_load();
pressure = get_pressure();
voltage = get_voltage();

// Push data into graphics.
GlgSetDTag(viewport, “Load”, load);
GlgSetDTag(viewport, “Pressure”, pressure);
GlgSetDTag(viewport, “Voltage”, voltage);

// Refresh the display.
GlgUpdate(viewport);

}

Prototyping Widgets in the Builder using Tags

The drawing may be prototyped in the editor by supplying simulated data using tags instead of
resources.

Select Start toolbar button, or Run, Start main menu option.

Supply the following animation command:
$datagen -tag -sin d 0 100 Load
 -tag -sin d 0 100 Pressure
 -tag -sin d 0 15 Voltage

Click OK to start animation.

The widgets will update, showing simulated dynamic data pushed to the specified tags.

Click on the Stop toolbar button, or select the Run, Stop main menu option, to quit prototype
mode. Note that the editing focus will be at the $Widget viewport, at the top level of the drawing.
Click on the Hierarchy Down button to set editing focus inside the viewport and continue with
the next steps described below.

Tag Browser, Tag Object, TagName, TagSource and TagComment

The tags for each object, as well as for the entire drawing, may be viewed and edited using the Tag
Browser dialog.

Assuming the dashboard.g drawing is loaded and the editing focus is inside the $Widget viewport,
click in an empty space in the drawing or press ESC to make sure no object is selected. The Name
field in the Status panel at the bottom of the editor should show No name.

42 GLG Builder and Animation Tutorial
Click on the Tags toolbar button or select Tags in the popup menu. This will bring the Tag
Browser dialog that lists all tags stored in the drawing as shown in the image below.

Tag Browser Dialog

GLG Builder and Animation Tutorial 43
Click on the first entry Value / Voltage. It will bring two dialogs:

1. A dialog with the Attribute with Tag caption that represents an attribute (resource) object
the Value / Voltage tag is added to:

Attribute with Tag Dialog

Notice the Tag field showing Value / Voltage. Clicking on the Edit Tag button will bring the Data
Tag dialog discussed below, if it hasn’t been up already.

2. A dialog with the Data Tag caption that represents a GLG tag object corresponding to the
selected Value / Voltage tag.

As mentioned in the previous section, a tag is added to an attribute in a form of a tag object and is
represented by the Data Tag dialog shown in the image below.

Data Tag Dialog

As shown in the Data Tag dialog, a tag object has several attributes of its own, including TagName,
TagSource and TagComment.

44 GLG Builder and Animation Tutorial
TagSource is a string attribute that has a dual purpose, providing a data connectivity link between
the graphics and real-time data:

• it defines a data source variable (or a Tag ID) in the application’s data acquisition system
used to supply real-time values for the attribute the tag is attached to.

• it servers as an ID a program uses to push data (obtained from the data source variable
defined by TagSource) into graphics.

For example, in the dashboard.g drawing, Voltage is a tag ID the program obtains data from. It is
also the TagSource the program uses to push the obtained data into the Value resource of the
VoltageDial via the SetDTag method:

double voltage = GetData(“Voltage”);

SetDTag(“Voltage”, voltage);

The same tag source string may be assigned to multiple attributes in the drawing. A single API call
SetDTag(tag_source, value) for a given datasource variable tag_source will update all attributes
with TagSource = tag_source.

TagName is a string attribute that may be used to assign a meaningful label to a tag. When a tag
object is added to an attribute, the TagName is assigned to the attribute’s resource name by default.
For example, a tag object added to the Value attribute has TagName = Value by default. TagName
may be assigned a unique string which can be used by the application to identify the tag object,
allowing the application to reassign a data source for this tag object at run-time. While TagSource
may change at run-time, TagName is persistent and does not change when the tag’s data source is
modified.

In the dahsboard.g drawing, all tags have default TagName = Value.

The TagComment attribute is a string that may be used to store any additional user-defined
information associated with the tag.

Custom Tag Data Browser

Often times, defining tag sources manually is not convenient, and a user wants to be able to browse
available variable names from a custom data source and select an appropriate variable name for a
tag source. For that purpose, the Browse button is provided next to the TagSource field of the Data
Tag dialog. Clicking on a Browse button brings a Data Browser dialog populated with a list of tags
defined by the custom data DLL, glg_custom_data.dll on Windows, and by a shared library
libglg_custom_data.so on Linux/Unix platforms.

Custom data DLL should generate a list of available tags as defined by the custom data acquisition
system. The returned list of tag names is used by the Builder to populate the Data Browser dialog
allowing the graphics designer to choose an appropriate tag source for a given dynamic object
attribute, such as Value.

GLG Builder and Animation Tutorial 45
A sample of a custom data browser DLL, including the source code, is provided with the GLG
release and may be found in the directory <glg_dir>/editor_extensions/data_browser_example.
The example may be used as a template for writing a custom data browser DLL. Refer to the
README.txt file in this directory for detailed instructions.

Copy <glg_dir>/editor_extensions/data_browser_example/glg_custom_data.dll (or
libglg_custom_data.so on Linux) to the <glg_dir>/bin directory.

In the Data Tag dialog, click on the Browse button next to TagSource field. A data browser dialog
comes up. Select one of the fields from a list of available tag sources, for example
controller1/group11/tag111. This tag source gets assigned to the tag. Change the tag source back to
the original string, to continue with the rest of this tutorial.

Mapping Tags in an Application at Run-Time

An application can also map tags to datasources at run-time using the GLG API. An application can
use the GlgGetTagList method to obtain a list of tags defined in the drawing, traverse the list and
remap each tag in the list by changing its TagSource attribute. The TagName attribute of each tag
may be used by an application to identify the tag.

Loading Widget Drawings into the Builder

Each widget is represented by a separate .g drawing file. Some widgets, such as dials, meters and
charts, are contained in its own $Widget viewport and may be used in a program “as is”, without
adding them to a larger drawing. Note that there are some “viewportless” widgets that are not
contained in a viewport.

A viewport-based widget may be used “as is”, or it can be customized and saved as a custom widget.
To customize a widget, bring a desired widget palette and use Control-click to select the widget.
This will discard the current drawing and will load the drawing (.g file) of the selected widget.
Customize the widget by editing its resources or public properties, then save the drawing as a
custom widget. The filename of this drawing can be used in a program to load the widget at run
time.

In addition to the widget itself, the widget’s drawing also contains an icon and an animation
command for prototyping the widget in the Builder’s Run mode as described below.

Alternatively, to create a drawing with only one widget in it, select File, New (instead of File, New,
Widget), place a single widget in the drawing by clicking on it in a palette, name it $Widget and save
the drawing.

Refer to the Adding Widgets to a Drawing section on page 33 for information on how to add a
widget to an existing drawing.

46 GLG Builder and Animation Tutorial
Prototyping Widgets with Predefined Animation Commands

To prototype a widget’s run-time behavior, display a widget palette and Control-click on it to load
the widget’s drawing. Then click on the Start toolbar button and press OK to accept the default
animation command. Use the Stop button to return to the editing mode.

To test interactive behavior of button, slider or dial widgets, click on the Start toolbar button
and press Skip Command to start prototyping without animation. Click on the widget to test its
interactive behavior. For dial and slider widgets, click and drag to move the slider or dial with the
mouse. Use the Stop button to return to the editing mode.

Disabling Widget’s Interactive Behavior

Widgets such as dials and meters have an interaction handler attached to the widget’s viewport to
handle user interaction, allowing the user to change the widget’s value by moving the dial’s needle
with the mouse. The widgets may be used for both input and output. To disable the widget’s
interactive capabilities and use it only for output, delete the widget viewport’s input handler.

To delete the widget’s interaction handler, select the widget in the drawing, bring its Properties
dialog and delete the handler by emptying the Handler text field.

Saving the Drawing
To save the drawing, use either the Save toolbar button or File, Save from the main menu.

The Options menu contains settings that control how the drawing is saved. The default ASCII save
format enables the drawing to be displayed on different hardware platforms, as well as in the Java,
C#/.NET and JavaScript versions of the Toolkit. The default Save Compressed option minimizes
the size of the drawing. Disable the drawing compression if the drawing is used for code generation.

Notice that LWValue is a global name. The application doesn’t need to know which object or
attribute it is connected to.

Adding Geometrical Dynamics
You can add 2D and 3D dynamic behavior by adding dynamics to objects. The available
geometrical dynamics include rotate, scale, move, path and other types of dynamics.

Let’s add rotation dynamics to the Poly1 polygon. Select the Poly1 polygon and use Add Dynamics
 from the toolbar, or Object Dynamics, Add Dynamics from either the popup menu or the Object

menu, to bring up the Add Dynamics dialog.

GLG Builder and Animation Tutorial 47
Select the Rotate transformation type at the top of the Add Dynamics dialog, and select the Z rotation
axis to rotate in 2D:

Add Dynamics Dialog

You can either enter the rotation angle in degrees, or define it by selecting Angle In Drawing and
selecting two points anywhere in the Drawing Area. Try entering 180 as the angle value.

You can also change the center of rotation from its default position by either entering its new
coordinates (in the range -1000 to 1000) or selecting the Center In Drawing button and clicking in
the drawing with the mouse to define a new position.

Type RotateVar as the Variable Name and click on Apply. This will attach the dynamics to the object
and will bring up the Edit Dynamics dialog that shows dynamics attached to the object. The dialog
also shows the resource names assigned to the dynamics’ parameters that will later be used to
animate or change them: notice that RotateVar is used as a resource name of the dynamics’
controlling Factor.

Edit Dynamics Dialog

48 GLG Builder and Animation Tutorial
The Factor parameter is a normalized value in the range [0; 1], and ZAngle defines a rotation angle
in degrees. Either the ZAngle or Factor parameter may be changed, and the actual rotation angle is
calculated as multiplication of the ZAngle and Factor parameters.

For example, if ZAngle=180 and Factor=1, the object is rotated by 180 degrees; setting Factor=0.5
rotates the object by 90 degrees.

The Start Angle parameter defines the starting position for object rotation. For example, if
StartAngle=45, the object will be rotated by 45 degrees from its original position first, and then an
additional rotation will be applied according to the values of the Factor and ZAngle.

Prototype the dynamics (Start icon from the toolbar) with the following animation script:

$datagen -sin d 0 1 $Widget/Poly1/RotateVar

It will change the RotateVar parameter in the range [0; 1], causing the object to rotate in the range
[0; 180] degrees (as defined by the ZAngle parameter). Also notice the use of the resource hierarchy
since Poly1 has the HasResources set to YES.

Stop the animation (Stop toolbar button), go down into the widget viewport and select the Poly1
object. Activate the Edit Dynamics dialog by selecting Edit Dynamics from the toolbar (you
can also select Dynamics Edit from the bottom of the Properties dialog, or use Object Dynamics,
Edit Dynamics from either the Object menu or the popup menu).

The Edit Dynamics dialog shows the number and types of dynamics attached to an object (any
number of dynamics may be attached), as well as parameters of the selected dynamic
transformation. You can edit the dynamics’ parameters after it has been created by either entering
numerical values or selecting the ellipsis button next to the parameter for more options.

For the rotate transformation, either the ZAngle or Factor parameter may be used as a controlling
parameter for animation:

1. Set ZAngle to a fixed angle and animate the controlling Factor in the range [0;1] to rotate the
object by the fraction of the angle. For example, if ZAngle=90, setting Factor=1 rotates the
object by 90 degrees, and Factor=0.5 rotates the object by 45 degrees.

Refer to the Changing attribute range section on page 55 for information on how to define
a custom range for the Factor parameter.

2. Set Factor=1 and animate the ZAngle parameter by setting it to the actual desired angle of
rotation in degrees.

While animating the ZAngle is specific to the Rotate dynamics, animating the controlling Factor
may be used as a universal way to animate geometrical dynamics of any type.

If the object is moved, the rotation center moves with the object. For example, if the rotation Center
coincides with one of the triangle’s corners, the triangle will still rotate around that corner after the
triangle has been moved to a new position.

GLG Builder and Animation Tutorial 49
This behavior is controlled by the default STICKY MODE setting of the MoveMode attribute. If it’s not a desired behavior
and the object’s rotation center should not move with the object, the STICKY MODE setting can be changed to MOVE
POINTS at the top of the object’s Properties dialog. When MoveMode=MOVE POINTS, the object will still rotate around
the old center position after the object has been moved.

Adding Attribute Dynamics
In addition to setting attribute values directly as it was done in earlier examples, you can also add
attribute dynamics to the attribute object in a way similar to adding geometrical dynamics to
objects. The GLG Builder provides two sets of attribute dynamics options: predefined dynamics as
well as stock transformations. The stock transformations are basic transformation types used as
building blocks to implement certain dynamic behavior. Predefined dynamics provide easy to use
options for implementing the most common dynamic actions; they represent a collection of several
stock transformations wired together to implement a specific dynamic behavior.

The types of available dynamics differ for different attributes. The following sections describe some
of the predefined dynamics as well as stock transformations. Refer to the GLG documentation for
the complete list of available attribute dynamics.

Predefined Attribute Dynamics

Predefined dynamics provide a simplified interface for adding most common dynamic behavior to
object attributes. For example, follow the steps below to add Color Blinking dynamics to the
FillColor attribute of the polygon Poly1.

Go down into the widget’s viewport, select the Poly1 polygon and open its Properties dialog. Select
the ellipsis button next to the FillColor attribute to activate the Attribute dialog.

Select the Add Dynamics button at the bottom of the Attribute dialog. This will display a list of
available dynamics, with predefined dynamics listed first by default. The Stock Dynamics button at
the end of the list may be used to access additional stock transformations described later in this
section.

Select Color Blinking from the list. Edit Color Dynamics dialog appears, presenting a list of
parameters of the dynamics. When the Enabled parameter is set to 1, blinking is activated at run-
time, alternating the object’s color between OffColor and OnColor. When Enabled is set to 0,
blinking will be disabled, and OffColor will be used to display the object’s color. The Interval
parameter defines blinking interval in seconds. For example, set the Interval parameter to 0.25 to
define a blinking rate of four times per second.

By default, OffColor is set to the value of the FillColor attribute, and OnColor is set to “1 0 0” (red
color). These parameters may be changed as needed.

In order to access a dynamics’ parameter in the application code, the parameter has to be named.
Assigning a name to a parameter makes it accessible as a resource. A name may be assigned to a
parameter using the right most field in the parameter’s row.

50 GLG Builder and Animation Tutorial
In the Edit Color Dynamics dialog, enter BlinkEnabled in the right most field in the Enabled
attribute row. This will allow the application to enable or disable blinking at run-time by setting a
resource “Poly1/BlinkEnabled” using the GLG API.

Likewise, you can assign names to other attributes. For example, enter BlinkOffColor in the right
most field in the OffColor attribute row. Enter BlinkOnColor in the right most field in the OnColor
attribute row.

Click on the ellipsis button next to the OnColor attribute to activate OnColor Properties dialog.
Notice that BlinkOnColor appears in the Name field of the OnColor Properties dialog, displaying
a name assigned to the OnColor attribute of the dynamics.

In the OnColor Properties dialog, select a color from a color palette to change the value of the
OnColor attribute.

Note that since the FillColor attribute has dynamics attached, the object’s color may be now
changed only via the OffColor attribute of the dynamics. Click on the ellipsis button next to the
OffColor attribute to activate OffColor Properties dialog. Notice that BlinkOffColor appears in the
Name field of the OffColor Properties dialog, displaying a name assigned to the OffColor attribute
of the dynamics.

Select a color from a color palette to change the value of the OffColor attribute and notice that the
polygon’s fill color will change accordingly.

Click on the OK button in the Edit Color Dynamics dialog to close the dialog.

Click on the Resources toolbar button to open the Resource Browser for the Poly1 object.
BlinkEnabled, BlinkOffColor and BlinkOnColor are visible as object’s resources and may be
accessed in the application code using the GLG API.

Click on the Close button in the Resource Browser dialog to close the dialog.

Click on the Start toolbar icon to prototype blinking dynamics. Click on the OK button to accept
the existing animation command.

Since Poly1/BlinkingEnabled is set to 1, the polygon will blink alternating between two colors
defined by “Poly1/BlinkOffColor” and “Poly1/BlinkOnColor” resources.

Stop the animation (Stop toolbar button).

Go down into the widget’s viewport, select the Poly1 polygon and bring up the Properties dialog.

Notice that there is an x button to the right of the FillColor attribute, indicating that this attribute
has dynamics attached. This button provides a shortcut to the Edit Dynamics dialog, allowing to edit
or delete the dynamics.

Click on the x button next to the FillColor attribute to open the Edit Color Dynamics dialog.

Click on the Delete button in the Edit Color Dynamics dialog to delete the Color Blinking dynamics.

GLG Builder and Animation Tutorial 51
Many other types of predefined dynamics are available. The following lists some of the available
types of predefined color dynamics:

• Color Blinking dynamics described above is used to turn the blinking on or off based on the
boolean input signal

• Color Blinking Alert dynamics can be used to activate color blinking when a value of the input
variable goes out of range

• Color Alert dynamics changes an object’s color when the input value goes out of range.

• Color Threshold changes an object’s color based on the defined thresholds for the input
variable

Predefined dynamics can be attached to the Visibility attribute to change object visibility based on
the input value, as well as blink the object.

Predefined dynamics can be also attached to the TextString attribute of a text object. For example,
the Value Display dynamics can be attached to the TextString attribute to display a numerical value
of an input variable using a specified format.

Using Stock Transformations

While predefined dynamics cover most common attribute dynamics, an application developer may
need to use stock transformations to add elaborate custom dynamic behavior to an object’s
attributes. Stock transformations provide greater control over all aspects of the dynamics, and are,
in fact, used as building blocks for predefined dynamics.

The following sections provide simple examples of using stock transformations. Although the
dynamic behavior described below may be achieved using predefined dynamics, this section
concentrates on how to implement various attribute dynamics using stock transformations.

Complex dynamic actions can be constructed as a collection of several stock transformations wired
together to implement custom dynamic behavior.

Color dynamics

In addition to setting the RGB value of objects’ color attributes using the resource mechanism, color
dynamics may be used to allow selecting a color from a list of colors.

If the Properties dialog for the Poly1 object is not open, select the Poly1 polygon and open the
Properties dialog for it.

Select the ellipsis button next to the FillColor attribute to activate the Attribute dialog.

Select the Add Dynamics button at the bottom of this Attribute dialog. This will display the list of
available dynamics on the right of the dialog. Select Stock Dynamics at the end of the list to display
a list of available stock transformations. Select the List dynamics button, which attaches a list of
color values to the attribute and brings the Edit Dynamics dialog showing the List dynamics
attached to the Fill Color attribute object.

52 GLG Builder and Animation Tutorial
The Edit Dynamics dialog may later be invoked by selecting the Dynamic Edit button from the
Attribute dialog or by clicking on the X button on the right of the FillColor attribute on the object’s
Properties dialog.

Enter ColorIndex as a name for the dynamics’ Value Index parameter in the right-most field. This
resource name will be used to change the color displayed. The value of 0 will display the first color,
the value of 1 will display the second color, and so on.

Select the ellipsis button next to the List of Values to display the list of colors. Select the first
item in the list and define it’s color by selecting a color from the palette, then select the second item
and define its color as well.

Click on the Add button at the bottom of the List dialog to add the third color value and define its
color.

Try changing the value of the Value Index parameter from 0 to 1 and 2 and notice the colors
changing according to the colors in the list.

Animate the drawing with the following script:

$datagen -sleep 0.2 d 0 3 $Widget/Poly1/ColorIndex

where -sleep 0.2 is used to slow down the animation by pausing for 0.2 sec. after each update.

Note: the color of the attribute itself is added to the color from the list, so the attribute value is set
to black (RGB value of [0,0,0]) when the list dynamics is applied to avoid interference.

Blinking

GLG objects may have a blinking or simple animation functionality added in the GLG Builder, so
that the “blinking effect” or animation is incorporated into the drawing and achieved with no
programming.

It is accomplished by adding a timer transformation to an object’s attribute which needs to be
animated. To achieve blinking effect, the value of the attribute needs to be toggled between two
values representing the OFF and ON state. Timer transformation can be added only to an attribute
of a D type. For example, it may be attached to object’s Visibility attribute to toggle the object’s
visibility on and off. To implement color blinking, the timer transformation can be attached to the
ValueIndex attribute of the color list transformation attached to an object’s color.

Let’s add timer transformation to the ColorIndex attribute of the Poly1 object.

Go down into the widget’s viewport, select the Poly1 polygon and bring its Properties dialog. Click
on X button to the right of the FillColor attribute. This will bring a dialog for editing the List
transformation attached to the polygon’s FillColor. Click on the ellipsis button next to the
ValueIndex attribute (which is named ColorIndex).

In the Attribute dialog of the ColorIndex attribute, select the Add Dynamics button and select Timer.
This will add a Timer transformation to the attribute and pop up a dialog for editing the
transformation’s attributes.

GLG Builder and Animation Tutorial 53
To alternate between 3 colors of the color list transformation, set the Period attribute to 3. Name the
Interval attribute TimeInterval and set its value to 0.5 (time interval is defined in seconds). Set
MaxValue to 2, since we want the ColorIndex attribute to alternate between values 0, 1 and 2.

Name the Enabled attribute AlarmEnabled, so that it can be accessed as a resource if needed. When
the attribute is set to 1, the timer will go off automatically with a specified timer interval, and the
object will “blink” at run time with no programming involved. The blinking effect will be achieved
by alternating between 3 colors in this case (to alternate between two colors, set Period=2 and
MaxValue=1). To turn off the timer, the AlarmEnabled resource may be set 0.

Let’s animate the drawing by clicking on the Start toolbar button. Erase the animation
command, since no resources need to be animated (the timer goes off automatically), and click OK.
The polygon will change its color every 0.5 seconds to indicate an alarm state.

Quit the prototype.

Blinking effect also may be achieved by adding a Timer transformation to the Visibility attribute of
an object. As an example, let’s use a text object and add blinking functionality to it by toggling its
visibility.

Create a fixed text object by clicking on the Fixed Text button in the Object Palette. Click in
the drawing to define its anchor point and enter the string to be displayed, for example ALARM, then
click on OK to finish.

Bring the Properties dialog for the text object. Name the object Label and set HasResources=YES.

Click on the ellipsis button next to the Visibility attribute to pop up its Visibility Attribute dialog.
Click on the Add Dynamics button and select Timer transformation.

When the timer is disabled, the value of the text object’s Visibility attribute will be set to the timer’s
MinValue attribute. To make text object visible when the timer is disabled, set MinValue=1 and
MaxValue=0.

Set the timer’s Interval attribute to 0.3 to define 0.3 sec. time interval. Name the Enabled attribute
AlarmEnabled. When it is set to 1, the timer will go off and the text will blink. The
Label/AlarmEnabled resource can be set programmatically to enable or disable text object’s
blinking.

Let’s animate the drawing again by clicking on the Start toolbar button. A polygon object will
blink by alternating its color, and the text object will blink by alternating its visibility. Quit the
prototype.

The timer transformation may also be used to animate attributes of objects or object’s
transformations. For example, a timer transformation may be connected to an angle attribute of the
rotate transformation to continuously rotate the object the transformation is attached to.

54 GLG Builder and Animation Tutorial
Text dynamics

The simplest way to implement text dynamics is by setting the string attribute of the text object
directly from a program. If a numerical or formatted value has to be displayed, GLG also provides
a way to format the numerical value right in the drawing instead of coding it in the program.

Numerical text dynamics

This type of dynamics is used to display formatted numbers. Let’s create a text object to exercise
this type of dynamics. We’ll use the Fixed Text in this section, but the dynamics may be applied to
any type of a GLG text object.

Go down inside the widget viewport. Select Fixed Text from the Object Palette, click in the
drawing to define text’s position and enter the text string. Bring up the Properties dialog and select
the ellipsis button next to the TextString attribute to bring up the Attribute dialog for the string
attribute.

Select the Add Dynamics button from the Attribute dialog to list the available text dynamics.

Select the Stock Dynamics option and click on the Format D button to add numerical format
dynamics. This will activate the Edit Dynamics dialog, showing the format dynamics attached to
the text object’s String attribute.

Name the Data parameter Value1 by entering the name in the right-most field. This resource name
may now be used to supply data for display. Try entering a different numerical value for the Data
parameter and see how it changes in the drawing.

The Format parameter is a C language double format specification used to format the output. It must
use some form of the %f, %g or %e C format for double values. The number after the decimal point
defines the number of digits after the decimal point displayed in the output. You may also add other
format symbols, for example try changing format to read “Value1 = %.3f”. The Format Type
attribute may be used to display the value as an integer using one of the integer formats: %d, %x or
%o. The type of the format specification must match the setting of Format Type attribute.

Formatted text dynamics

The FormatS dynamics is similar to the numerical text dynamics described above. The only
differences are that the Data parameter is a string instead of a double numerical value, and the
format uses the “%s” C format specification to format the output.

As an example, try attaching a formatted text dynamics to the Text String attribute of another text
object and name it’s Data parameter string1. Use “string1 = %s” as the format and “Hello, world!”
as the value of the Data attribute.

List of strings dynamics

The list dynamics used above for colors may also be applied to the TextString attribute of the text
object. In this case the list will contain strings to be displayed, and the Value Index parameter of the
list dynamics will control which string is displayed.

GLG Builder and Animation Tutorial 55
Changing attribute range

The Range Conversion transformation may be used to change the range of an object attribute or
dynamics’ parameter to adjust to the range of a variable used in a program. For example, it may be
used to change the range of the controlling variable of the rotate dynamics attached to the Poly1
polygon created earlier.

By default, when Factor changes in the range [0; 1], the object rotates in the range [0; ZAngle]. For
example, if ZAngle=180, setting Factor=1 rotates the object by 180 degrees; setting Factor=0.5
rotates the object by 90 degrees.

Let’s try changing the range so that the object rotates between 0 and Z Angle when the Factor
parameter changes between a low and high range different from [0; 1].

Set Z Angle to 180. Our goal is to be able to supply a value for the Factor in the range [0; 10] instead
of [0; 1] to rotate the object between 0 and 180 degrees.

Go down inside the widget viewport. Select the Poly1 object, bring up the Edit Dynamics dialog
(use the Edit Dynamics toolbar button), make sure the Rotate dynamics is selected. Note that
in our example, Factor attribute is named RotateVar.

Click on the ellipsis button next to the Factor, then click on Add Dynamics to display a list of
available transformations.

Select Range Conversion to attach a range transformation. The attached Range Conversion
transformation will appear in the Edit Dynamics dialog, with a list of transformation’s parameters
displayed in the middle of the dialog.

InLow and InHigh parameters represent the range of the incoming data. OutLow and OutHigh
represent the normalized range of the transformation’s output value and should remain 0 and 1.

InputValue represents the incoming data value. The Range Conversion transformation takes the
value of the InputValue attribute as input and converts it from the InLow/InHigh range to the
OutLow/OutHigh range. For example, set InLow to 0, and set InHigh to 10. Set InputValue to 5; it
will make the object rotate by 90 degrees. Setting InputValue to 0 will return the object into its
original position; setting InputValue to 10 will rotate the object by 180 degrees.

Notice that the resource name RotateVar is now assigned to the InputValue parameter of the Range
Conversion transformation, as opposed to the Factor attribute of the Rotate transformation.

To expose transformation’s parameters as resources, the parameters must be named. Using the
rightmost text entry box in each parameter’s row (in the Name column), name InLow parameter
Low, and name InHigh as High.

Click on the Back button, to go back to the Rotate dynamics screen. The Factor attribute is now
unnamed, as the RotateVar is now the name of the InputValue attribute of the Range Conversion
transformation. The value of the Factor attribute is desensitized and cannot be changed directly,
since the value of the Factor is now controlled by the Range Conversion transformation. The x

56 GLG Builder and Animation Tutorial
button to the right of the Factor row indicates that Factor has a transformation attached. Click on
the x button to display the Range Conversion transformation. Click on the Back button to go back
to the Rotate dynamics.

With the object being selected, click on the Resources toolbar button to display object’s resources.
Since the object’s HasResources flag is set, Low, High and RotateVar resources will appear in the
Resource Browser as resources of Poly1. Low and High resources can be set at run-time to define
the low and high range of the incoming data, and the RotateVar resource can be used to supply real-
time data values to animate the object.

To return to the object’s transformations at a later time, select the object, bring Properties dialog,
click on Dynamics Edit button to display Rotate Z dynamics. To access Range Conversion attached
to the Factor, click on the x button to the right of the Factor, or click on the ellipsis button next
to the Factor and click on the Dynamics Edit button in the activated Attribute dialog.

The range transformation may be attached to any scalar (D) attribute of any object.

Editing Control Points and Attaching Control Point Dynamics
You can adjust control points by moving them with the mouse. You can also Shift-click on the
control point (click on the point with the left mouse button while pressing the Shift key) to bring up
the Control Point dialog for fine tuning the control point values. Shift-click is also convenient for
selecting one out of several closely positioned control points.

You can use the Control Point dialog to enter the X, Y and Z coordinate values of the control point
(in the -1000 to +1000 range for the default coordinate mapping).

You can also use the directional buttons to fine-tune the control point position, moving it by one or
more pixels in a selected direction.

You can Shift-click on the Move Control Point (a special point in the center of the object) to move
the object using directional buttons. You can also Shift-click on the Rotate Point (a special point
on the right side of the Resize Box) to rotate the object by a defined angle using directional buttons.

You can add geometrical dynamics to individual control points by selecting the Add Dynamics
button in the Control Point dialog, and then proceeding in the same way as when attaching
geometrical dynamics to objects.

To move several control points uniformly, use the constrained transformations described in the
Using Constrained Dynamics and Marked Transformations section.

GLG Builder and Animation Tutorial 57
Adding Extended Rendering Attributes
A rendering object may be attached to GLG graphical primitives (polygon, arc, etc.) to define an
optional set of extended rendering attributes. These attributes are not part of the object by default
for the sake of efficiency, and are added only to the objects that truly need them. The extended
rendering attributes include attributes that define and control several types of gradient fill, cast
shadows, arrowheads and fill dynamics.

To add rendering attributes to an object, select the object, display its Properties dialog, then click
on the Add Rendering button at the end of the properties list. This will add rendering to the selected
object and display the properties of the rendering object. For example, create a filled polygon, set
its FillColor to white, display its Properties dialog and add rendering to it.

If the selected object has already had rendering added, the Edit Rendering button will be displayed,
allowing the user to access the rendering attributes for editing.

To delete the rendering, press the Delete Rendering button at the end of the Rendering Properties
list.

To return to the object attributes without deleting Rendering Attributes, press the Previous button
at the bottom of the Properties dialog.

Gradient Fill

To add a linear gradient fill to the polygon created above, change the Gradient Type from NONE to
ACYCLIC LINEAR in the Rendering Properties dialog. The object will be rendered with a gradient
fill, changing its color from its original FillColor to the GradientColor.

The GradientColor attribute defines the second color for the gradient fill. Press the ellipsis button
 next to the GradientColor to display a color palette for selecting it.

Change the GradientType to CYCLIC LINEAR and notice the change in the gradient fill: it now
cycles from the object’s FillColor to the GradientColor and back to the FillColor.

The GradientAngle attribute controls the angle of the gradient, measured counter clock-wise
relative to the X axis. Change the angle to 90 to render a vertical gradient fill.

Change the GradientType to CONICAL and then SPHERICAL to see the corresponding gradient
fills. Finally, change the GradientType from SPHERICAL to INVERSED SHPERICAL and notice
the change in the gradient fill colors: instead of changing from the object’s FillColor to the
GradientColor, the color change is inversed.

The GradientLength attribute controls area of the object rendered using the gradient fill. Change the
GradientLength to 0.5 to see only half of the object area filled with the corresponding gradient.

The GradientCenter attribute defines the gradient center in relative coordinates. Change the
GradientCenter to 0,0,0 to have the gradient centered at the lower left corner of the object’s
bounding box. Setting the attribute’s value to 1,1,1 centers the gradient at the top right corner of the
object’s bounding box.

58 GLG Builder and Animation Tutorial
The GradientResolution defines the number of polygon segments used to render the gradient fill.
On non-True Color systems, due to the lack of available colors, the actual number of polygons used
may be less than the specified value.

Fill Dynamics

The FillAmount attribute is used to implement the fill dynamics commonly encountered in process
control and other drawings showing tanks filled with liquid substances. A changing substance level
may be implemented by adding rendering attributes and changing the FillAmount of the object
representing the tank.

Try changing the value of the FillAmount of a filled polygon with rendering attributes. If the value
is 1, the whole object is drawn. If the value is less then 1 (0.5, for example), only a portion of the
object’s fill will be drawn, as defined by the fill amount. If the value is 0, the fill is not drawn (i.e.
tank is empty). Notice that the object’s edge is not affected by the value of the FillAmount, and that
the object’s fill type must be either FILL or FILL AND EDGE in order to use fill dynamics.

The FillAmount attribute may be named for easy access (press the ellipsis button next to the
FillAmount and enter the name in the Attribute dialog). The name of the FillAmount will appear in
the resource browser together with the other object resources.

The FillDirection attribute defines the direction of the fill dynamics. You may select one of the 4
preset values: UP, DOWN, LEFT or RIGHT, or define an arbitrary angle. To define an arbitrary
angle, press the ellipsis button next to the FillDirection and enter the value of the fill angle. The
angle is measured counter clock-wise, relative to the X axis (for example, an angle of 90
corresponds to the UP fill direction).

Shadows and Arrowheads

The ShadowOffset attribute controls the offset of the cast shadow. The offset is in screen pixels, and
if the offset’s value is not 0 in the X or Y direction, a shadow is rendered, as defined by the
ShadowColor attribute. Press the ellipsis button next to the ShadowColor to display a color
palette for selecting the color.

The ArrowType attribute defines the type (LINES or FILLED) and position (one of the ends, both
ends, or the middle) of arrowheads drawn on a polygon, arc, and other polygon-like objects. The
arrowheads are drawn when the ArrowType differs from NONE. Try selecting different ArrowType
values and observe the resulting arrowheads. The ArrowShape attribute allows the user to define a
custom arrow shape by specifying the X and Y extent of the arrowhead.

Text Boxes

The text object allows the user to define an optional text box around the text by attaching the Box
Attributes object. The Box Attributes define the attributes of an outline or filled box drawn around
the text.

GLG Builder and Animation Tutorial 59
Try creating a text object and adding Box Attributes by clicking on the ellipsis button next to
the Add Box Attributes label at the end of the text’s Properties dialog. An outline drawn around the
text will appear. Change the FillType from EDGE to FILL & EDGE to display a filled box, then
select the FillColor of the box (click on the FillColor’s ellipsis button to display a color palette). The
BoxOffset attribute defines an offset in pixels between the text and the edge of the box.

To delete the Box Attributes, click on the Delete Box Attributes button at the bottom of the Box
Attributes’ properties.

To return to the text object’s attributes without deleting the Box Attributes, press the Previous
button at the bottom of the Properties dialog.

Using permanent groups
A group object provides a convenient way to hold several objects together, so that they can be
saved, moved or edited as one entity.

Creating a group

To create a group, select the Group icon from the Object Palette, then click and drag the mouse
to define a rectangular area. A new group will be created and all objects that are either completely
or partially inside the defined rectangle will be placed inside that group.

When the group is selected, the control points of all objects in the group are displayed. Also, the
group’s control points don’t have a cross in the middle.

Editing Individual Objects in a Group

To get access to individual objects in the group, go inside the group in the same way you got used
to with the viewport object. Select the group and click on the Hierarchy Down button to zoom
into the group. After this you’ll be able to select and edit individual objects inside the group. Go
back up when finished editing.

You can also select individual objects in the group in the context of the drawing without traversing
down. Click on Select Next in the group’s Properties dialog and selecting the object in the group
you want to edit. After editing an object, simply select the next one with the mouse. Select an object
outside of the group to finish editing group objects.

When several groups are nested, you may use Select Bottom from the group’s Properties dialog to
select an object on the bottom of the group’s hierarchy.

Select Next and Select Bottom are also available as toolbar buttons. When a permanent
group is selected, Ctrl-Shift-click on an object inside the group also works as a shortcut for the
SelectNext operation.

60 GLG Builder and Animation Tutorial
Editing All Objects in a Group

Groups provide a convenient way to edit many objects at once. To edit multiple objects in an
existing group, select the group, click on the Edit All button in the group’s Properties dialog or use
the Edit All (First) option in the Traverse or Arrange menus. The properties to be edited will be
determined by the type of the first object in the group. As you edit any of the attributes, all objects
in the group that have that attribute will be changed. To return to the properties of the group, click
on the Prev button at the bottom of the Properties dialog.

A group may contain objects of different types, such as polygons or text objects, in which case the
Edit All (Select) option allows you to select a set of properties to edit by clicking on an object in the
group. The type of the selected object will define the set of attributes to edit.

For example, to edit Anchoring of all text objects in the group, click on Edit All (Select) and select
any text object in the group with the mouse to edit text attributes. To edit the Line Width of all
polygons in the group, use Edit All (Select) and select a polygon to define the polygon attribute set.

If you constrain an attribute (see the Using Constraints section below) while editing all objects in
the group, the corresponding attribute of all the objects in the group will be constrained.

If you want to edit multiple objects that do not belong to a group together, create a temporary group
as described in the the Multiple Selection section on page 16. The temporary group will be destroyed
automatically when unselected.

Adding and Deleting Objects from a Group

You can add or delete objects from a group by using the Add To Group and Delete From Group
toolbar buttons.

To add to a group, select the group, click on the Add To Group toolbar button and select objects
in the Drawing Area you want to add. Press the Escape key to finish.

To delete objects from the group, select the group, click on the Delete From Group toolbar
button and select the objects in the group you want to delete. The objects will be deleted from the
group and added to the Drawing Area.

You can also zoom down into the group to manipulate group objects one by one.

Exploding Permanent Groups

To release the objects from the group, explode the group by using the Explode Object toolbar
button or Arrange, Explode, Explode Object from the main menu.

Explode operation may be applied to other objects as well, such as circles, arcs or series, but keep
in mind that Explode action can’t be reversed when executed.

GLG Builder and Animation Tutorial 61
Object Layout and Alignment
If you need to align or layout a group of objects, Layout Toolbox provides a point and click interface
for such functionality. Examples of layout and alignment operations include aligning several objects
horizontally or vertically, setting the same width for several objects, positioning objects within a
defined distance from each other, or distributing the objects evenly across the defined extent in a
horizontal or vertical direction.

Click on the Layout Toolbox button in the toolbar to activate a Layout Toolbox. Alternatively,
the Layout Toolbox can be activated using Layout, Layout Toolbox option in the main menu. The
following picture shows the Layout Toolbox:

The top of the Layout Toolbox contains icons for actions that do not require a value, such as aligning
objects or making them the same width or height. The bottom of the toolbox contains controls for
actions that require a value, such as setting an object’s width or height to a specified value.

To experiment with the Layout Toolbox, create three rectangles using the Filled Rectangle
button and position them horizontally, one next to another. Select all rectangles by clicking and
dragging the mouse to define a rectangular area that encloses all three rectangles. This will create a
temporary group containing all three rectangles.

Click on the Align Bottom button in the Layout Toolbox and notice that the bottom of all
rectangles will be aligned.

The Select Anchor Object button in the Layout Toolbox may be used to define an anchor object.
If an anchor is selected, its dimensions are used to align other objects. Click on the Select Anchor
Object button, then click on one of the rectangles to define it as an anchor.

If the anchor is not defined, one of the objects in the group will be chosen as an anchor
automatically. Once the anchor is defined, it will be persistent for all layout operations until another
anchor is chosen or the objects are unselected.

Click on the Set Same Height button to set the height of all rectangles to the height of the anchor
rectangle.

62 GLG Builder and Animation Tutorial
The icons in the upper half of the toolbox perform actions when you click on them, while the icons
in the lower half of the dialog define actions to be performed when a numerical value is entered.

For example, follow these steps to position the rectangles with an even horizontal space between
them:

• Click on the Set Horizontal Space button to select the operation to be performed. Notice
that the label of the text edit box at the bottom of the Layout Toolbox displays the selected
operation and is set to Horiz.Space.

• Enter 50 as the value in the Horiz. Space text box and press Enter. This will position all rectan-
gles to be within 50 world coordinates from each other in the horizontal direction.

• Use the Up and Down buttons to increase or decrease the space between the rectangles using
the specified Increment.

The Coord: World / Screen control toggles between world and screen coordinates.

Press the Escape key to unselect the rectangles.

Creating Layers of Objects
A layer is a collection of objects whose visibility may be turned ON or OFF. Layers are usually
used to display collections of objects or icons on maps, schematic diagrams, etc.

A layer of objects may be created by placing several objects in a permanent group. The group’s
visibility attribute is then used to make the layer visible or invisible by setting just one visibility
attribute (of the group). Objects in the layer may use attribute constraints described in the previous
section to constrain some attributes to have the same value. For example, if you constrain the color
attributes of all the layer’s objects, changing one color resource will change the color of all objects.
Different layers may use different colors, line widths, etc., to accent the layer.

GLG Builder and Animation Tutorial 63
2. Advanced Features of the GLG Builder

Using Constraints
Constraints may be used to constrain the value of an object attribute to an attribute of another object.
This simplifies maintaining or animating collections of objects.

For example, imagine a drawing or a car that uses different polygon objects to render different parts
of the body. If the color attributes of all the polygons are constrained, you can change the color of
just one polygon object and the color of the whole car will change.

In more complex cases, parameters of dynamics may be constrained to change synchronously as
will be shown in the Using Constrained Dynamics and Marked Transformations section.

The constraints tracing option described in the Constraints Tracing section on page 308 of the
GLG User's Guide and Builder Reference Manual may be useful for debugging constraints defined
in the drawing.

Constraining Object Attributes
To exercise attribute constraints, start with a new widget (use File, New Widget from the main
menu). Create three polygons in the drawing and name them Poly1, Poly2 and Poly3. Select Poly1,
bring up it’s Properties dialog and select the ellipsis button next to it’s Fill Color attribute to
activate the Attribute dialog.

Select the Constrain button on the left of the Attribute dialog and select the Poly2 polygon in the
drawing with the mouse: this will constrain the Fill Color attribute of the currently selected polygon
to the Fill Color attribute of the polygon you selected with the mouse.

Try changing the color by selecting a new color from the color palette: the color of both polygons
will change.

This way of constraining works for constraining attributes of the same type. It will not work for
example, for constraining Fill Color of one polygon to the Edge Color of another polygon. To do
this, the Builder has features to mark attributes and later use marked attributes.

Click on the Mark button in the Attribute dialog to mark the Fill Color attribute of Poly1, which is
still selected (in editions of the Builder other than Basic, you also have to select Mark 0 from the
list since more then one mark is available).

Now select Poly3, bring up the Attribute dialog for its Edge Color attribute and click Constrain. To
constrain the edge color to the attribute that was previously marked, select the Use Marked button
from the list on the right of the Attribute dialog (another option is to constrain to a resource by using
the Resource Browser).

If you now select a new color from the palette, the Edge Color of Poly3 and the Fill Color of the
other two polygons will change simultaneously.

64 GLG Builder and Animation Tutorial
The marking feature may also be used to constrain parameters of object’s dynamics to change in
unison.

The object’s control points (other then the move point) may be constrained as well. Shift-click on a
control point to bring up the Control Point dialog, click on Constrain button and select a control
point of some object in the drawing to constrain to. If you now move the control point, both points
will move.

The Attribute dialog also has the Merge button. If several attributes are constrained, the Constrain
button unconstrains from a previous place and constrains to a new place, while the Merge button
constrains the attribute itself as well as all other attributes that were constrained to it to a new place.

If you’re not sure, use the Merge button as a first choice to preserve any existing constraints of
complex objects.

Using Constrained Dynamics and Marked Transformations

Constrained Dynamics Example

Constrained dynamics is convenient when you need to move several objects together. In case of
geometrical objects, the simplest way to move them together is to place them in a group and then
attach dynamics to the group. However, if you want to move two control points in the same way,
constrained dynamics provides the best solution.

For example, let’s try to create an animated object that resembles a bar of a bar graph.

Start with a new widget (use File, New Widget). Create a filled, rectangular shaped polygon by
clicking on the Filled Polygon icon and selecting 4 points in the drawing as shown in the
picture:

Don’t define the fifth point: it will be completed by the polygon when you finish entering points by
pressing the right or middle mouse button.

Now we are going to animate the top two points of the polygon to move up and down together. Shift-
click on the first top point to bring up the Control Point dialog and select Add Dynamics button to
activate the Add Dynamics dialog. Select the Move transformation type, click on the Move Vector
In Drawing button, and select two points in the drawing to define a vertical moving distance. Enter
Height as the Variable Name and hit Apply.

GLG Builder and Animation Tutorial 65
This will attach the Move dynamics to the control point and will bring up the Edit Dynamics dialog
showing the parameters of the attached transformation. Height should appear as the name of the
dynamics’ controlling Factor. Try changing the factor from 0 to 0.3, for example, and notice the
point moving in the drawing.

Select the Mark Object button from the Edit Dynamics dialog to mark the currently selected
dynamics for later use (the Mark List button marks all dynamics attached). Then close the Edit
Dynamics dialog, Shift-click on the second top point and select the Add Dynamics button.

But this time we are not going to attach a Move dynamics. Instead, we’ll reuse the same dynamics
that we just marked. Change the transformation type from Move to Use Marked, and select the
Constrained clone type. This means that a copy of the marked Move dynamics will be attached, and
all parameters of this copy will be constrained to the parameters of the marked dynamics.

Hit Apply to attach the dynamics and try changing the value of the controlling Factor (named
Height) from 0.3 to 0.5: both points will move the same distance.

Let’s adjust the initial position of the moving points to be at the bottom of the bar. Set the Height
parameter to 0, close the Edit Dynamics dialog and move the top points down to coincide with the
bottom points when the height equals 0.

Now prototype the drawing with the following animation script:

$datagen -sin d 0 1 $Widget/Height

The script will change the value of the Height resource from 0 to 1, resulting in the two top points
moving up and down by a defined distance.

The above example attaches move dynamics to two points of a polygon to demonstrate how to move
several objects together. This particular dynamic can also be accomplished by using a rectangle
object with dynamics attached to one of its points.

Using Marked Transformations

Marking and then using marked transformations (as described in the above example) is a convenient
way to add the same transformation to several objects. In the transformation dialog, one
transformation or a whole list may be marked for reuse. Selecting the Use Marked choice of
transformation types will attach one or more marked transformations to the object.

The Clone Type option controls the constraining of the cloned object’s attributes: if Full Clone is
selected, a fully independent copy of the transformation is attached, Constrained Clone attaches a
constrained copy with all attributes of the copy (or copies) constrained to the corresponding
attributes of the original transformation(s). The Weak Clone constrains only the attributes with
Global flag set to GLOBAL, and Strong Clone constrains attributes with the GLOBAL or
SEMIGLOBAL settings of the Global flag.

66 GLG Builder and Animation Tutorial
The Second Flavor of the Fill Dynamics
The constrained control points dynamics described in the previous section may be used to create a
Fill Dynamics similar to the one described in the Adding Extended Rendering Attributes chapter.

While using the FillAmount rendering attribute is the easiest way to implement fill dynamics, the
fill dynamics implemented using control points’ dynamics allows a few additional features: it
affects not only the fill but also the edge of the object, and it rotates with the object when the object
is rotated. For example, if rotate dynamics is attached to the object, the fill will rotate with the object
instead of continuing to fill vertically or horizontally. The fill dynamics implemented with the
FillAmount may be rotated only by changing the angle of the FillDirection attribute.

Defining Object Tooltips
The GLG drawing supports integrated object tooltips. If an object (or any of its parents) have a
tooltip action attached, the value of the action’s Tooltip attribute will be used to display a tooltip
when the mouse hovers over the object. If the object is a group, the tooltip will be displayed every
time the mouse moves over any of the group’s subobjects.

To attach a tooltip to an object, create an object and select Object, Add Tooltip from the main menu
(Enterprise Edition of the Builder is required to add the tooltip). This will attach a tooltip action to
the object and display a dialog for editing the action’s attributes. Enter the tooltip string in the text
box next to the action’s Tooltip attribute. To enable tooltips, set the ProcessMouse attribute of the
viewport that contains the object to a value that includes the Tooltip mask. To try the tooltip in the
prototyping mode of the Builder, press the Start toolbar button and enter an empty run
command. Move the mouse over the object and wait a fraction of a second to see the tooltip. The
tooltip disappears when the mouse is moved away from the object. Press the Stop toolbar button
to return to the edit mode.

At run time, the tooltip is handled by the Toolkit automatically, with no program actions required.
Refer to the Integrated Tooltips chapter of the GLG User’s Guide and Builder Reference Manual
for more details.

Using MouseOver Highlight and MouseClick Feedback
The GLG drawing can highlight objects in the drawing when the mouse is moved over them. This
is done by attaching an action with ActionType=TRACE_STATE and Trigger=MOUSE_OVER to an
object. The action’s State attribute will be set to 1 when the mouse moves over the object and reset
to 0 when the mouse moves away. The State attribute may be constrained to an object’s attribute,
such as a polygon’s LineWidth, or to an attribute of a dynamics, such as Value Index of the List
dynamics attached to the object’s FillColor, to modify the object’s appearance when the mouse
moves over the object.

If the action’s Trigger attribute is set to MOUSE_CLICK, the value of the action’s State attribute
will be set to 1 when object is clicked with the mouse, and reset back to 0 when the mouse button
is released. If ActionType=TOGGLE_STATE, the value of the State attribute is toggled between 0
and 1 every type the mouse clicks on the object.

GLG Builder and Animation Tutorial 67
To try the MouseOver highlight, create a filled polygon, name it, set its FillType attribute to FILL
& EDGE. Press the ellipses button next to the LineWidth attribute to display the Attribute dialog
for LineWidth, then press the Add Dynamics button.

Select the Stock Dynamics option and select the List button to add list dynamics to the LineWidth.
The Edit Dynamics dialog will be displayed.

In the Edit Dynamics dialog, press the ellipses button next to the Value Index attribute, then
click on Mark and Mark0 buttons in the Attribute dialog to mark the Value Index attribute for reuse.

In the Edit Dynamics dialog, click on the List of Values button to edit the list items. Select the first
list item and set its value 1, then select the second item and set its value to 3 to alternate between
the thin and thick lines.

With the polygon still selected, use the Object, Actions, Add Mouse Feedback menu option to add
a mouse feedback action with ActionType=TRACE_STATE to the polygon, then change the action’s
Trigger to MOUSE_OVER.

Press the ellipses button next to the State attribute, then use Constrain All and Use Marked
buttons in the Attribute dialog to constrain State to the previously marked Value Index attribute (the
Mark0 button may need to be selected if more than one attribute was previously marked).

Set the ProcessMouse attribute of the viewport containing the object to Move & Click, then start the
prototyping mode by pressing the Start toolbar button and entering an empty run command.
The polygon will be highlighted by changing its line width every time the mouse moves over it.
Press the Stop toolbar button to return to the edit mode.

Alternating the LineWidth attribute is just one of the ways to highlight the object. Various other
types of highlighting may be implemented by using different attributes and transformation types.
The following examples use different transformation type to implement a different form of visual
feedback.

To define the MouseClick feedback for the object, select the polygon object used in the previous
example and select the Add Dynamics toolbar button. Select the Move transformation type in the
Add Dynamics dialog, set the Start Point to “0 0 0” and End Point to “50 50 0”, then press the OK
button to attach the move transformation to the object.

In the Edit Dynamics dialog, press the ellipses button next to the Factor attribute, then click on
Mark and Mark0 buttons in the Attribute dialog to mark the attribute for reuse.

With the polygon still selected, use the Object, Actions, Add Mouse Feedback menu option to add
a mouse feedback action with ActionType=TRACE_STATE and Trigger=MOUSE_CLICK to the
polygon.

Press the ellipses button next to the State attribute, then use Constrain All and Use Marked
buttons in the Attribute dialog to constrain State to the previously marked Factor attribute (the
Mark0 button may need to be selected if more than one attribute was previously marked).

68 GLG Builder and Animation Tutorial
The ProcessMouse attribute of the object’s viewport already includes the Click mask, so you can
start the prototyping mode (select Start toolbar button and enter an empty run command).

Try clicking the object with the mouse and notice it moving a little bit diagonally and then returning
back when the mouse button is released. The MouseOver feedback is also displayed when the
mouse moves over the object. Press the Stop toolbar button to return to the edit mode.

Select the polygon object again, use the Object, Actions, Edit Actions menu option to display the
list of actions attached to the polygon, then select the second action (the one with
Trigger=MOUSE_CLICK) and change its ActionType to TOGGLE_STATE. Run the drawing in the
prototyping mode again and notice that now the object alternates its position every time you click
on it.

At run time, the mouse feedback actions are handled automatically, with no program code required.
Refer to the MouseOver Highlight and Cursor Change and the MouseClick Feedback and Toggle
chapters of the GLG User’s Guide and Builder Reference Manual for more details.

Attaching Custom Events and Commands
An integrated action may be attached to an object in the GLG drawing at design time to define a
command or a custom event to be triggered at run time when the object is selected with the mouse,
via either MouseClick or MouseOver. To attach an action to an object, select the object and use one
of the options of the Object, Actions menu of the Enterprise Edition of the Builder, or the HMI
Configurator.

The action’s attributes specify the type of action, its activation conditions (such as MouseOver or
MouseClick events), as well as the mouse button used to trigger the action. The action may also
contain additional parameters needed to execute the command associated with the action.

The viewport’s ProcessMouse attribute has to include a combination of Move and Click masks to
enable processing of the corresponding mouse events.

Input actions may be attached to the input objects, such as buttons or sliders, to be triggered by
specific user interaction, for example changing a value of a slider or clicking on a push button.

At run time, the program’s Input callback will be invoked, providing the program with information
about the object and action that generated the event. The program will then use this information to
process the command associated with the action to implement the application logic.

Refer to the Integrated MouseOver and MouseClick Actions chapter on page 235 of the GLG User’s
Guide and Builder Reference Manual and the Action Object chapter on page 211 for more details.

Refer to the GLG Programming Manual for more details of the Input callback and custom event
handling.

GLG Builder and Animation Tutorial 69
Using Editing Focus
The Editing Focus feature provides a shortcut to edit objects inside the viewport without zooming
down into it.

To move the editing focus inside the viewport, select the Set Focus button from the Control
Panel on the left and click on the viewport whose objects you want to edit. The editing focus will
be temporarily be moved inside the viewport, changing it’s border width to indicate the current
focus. You can now select and edit objects inside the viewport.

To move the focus to some other viewport, set the focus again. To reset the focus back to the
Drawing Area, select the Main Focus button.

The focus is very convenient for editing nested viewports without traversing down several hierarchy
levels.

Note: You zoom down only if editing focus is set to the Drawing Area. If the focus is moved into
some viewport, reset it back to the Drawing Area before zooming down.

Changing Viewport’s Font Tables
The fonts used in a drawing are defined by the viewport’s Font Table. You can edit the Font Table
of any viewport right in the builder to define the number and types of fonts which can be used. The
text objects in the drawing use the font type and font size indexes to select a font from the font table.

The Font Tables are used to optimize real-time access to the font rendering engine and prevent
rendering a huge number of slightly different fonts that can bring even the powerful CPU to its
knees, since GLG drawings may contain hundreds or even thousands of text objects. The future
versions of the Toolkit will also provide an alternative way for specifying the font directly as an
attribute of a text object for applications with a smaller number of fancy text objects.

The font tables may contain any font existing on the system, True Type or not, proportional or
monospaced. The fonts are organized into font families that contain different sizes of the same type
of font. These sizes are used to scale the GLG scalable text objects.

To change the font, click the Screen Attributes button in the viewport’s Properties dialog, click on
the Add Font Table button to add a custom font table and select the ellipsis button next the Fonts
label to show the attributes of the font table.

You can then define the number of font types and sizes in the font table, as well as select the fonts
used. For each font, you can define separate font names to be used in a Linux/Unix, Windows, Java
and JavaScript environments. When finished, you can save the font table for later reuse in this and
other drawings.

If a drawing contains several nested viewports, you can define the font table only for the top
$Widget viewport of the drawing and set the rest of the nested viewports to use the default font table.
This will cause the nested viewports to inherit the table from the parent $Widget viewport.

70 GLG Builder and Animation Tutorial
3. GLG Widgets and Custom Objects
The GLG Toolkit provides collections of pre-built widgets, such as Real-Time Charts, 2D
Graphs, 3D Graphs, Controls, Avionics, Process Control Symbols, Electrical and Electronic
Circuit Symbols, and Special widget sets. Possible widget palettes also include custom palettes
provided by an OEM vendor.

The Professional and Enterprise version of the builder also allow building custom interface
objects from scratch (refer to the Widget Input chapter of the GLG Programming Reference Manual
for more details).

The Builder’s Custom Objects palette provides a few samples of graph and control widgets.

Using Custom Object Palette
The Custom Objects palette (the Custom Objects icon in the Object Palette or Palettes/Custom
Object option of the main menu) provides a few predefined interface objects that may be used in
GLG drawings.

The Custom Object palette provides the following interface objects:

Custom Button

A button with custom graphics inside. To edit or replace the graphics, select the button’s viewport
and go down into it.

The button has a TooltipString resource that defines the tooltip string displayed in the Run mode.

Custom Toggle

A toggle with custom graphics inside. To edit or replace the graphics, select the button’s viewport
and go down into it. The toggle’s graphics must have a resource named OnState. The toggle changes
the value of this resource between 0 and 1 when you click on the toggle in the Run mode.

You may delete the OnState resource and provide your own. For example, create a toggle from the
palette, select it and zoom down into it. Use the Resources toolbar button to bring up the
Resource Browser, select the OnState resource and erase its name in the Attribute dialog. Close the
resource browser.

Now select the moving red part of the toggle, bring up the Properties dialog, click on the ellipsis
button next to it’s Visibility attribute and name the Visibility attribute OnState by typing the
name into the Name field of the Attribute dialog.

Go back up (this also resets the drawing after resource names change) and prototype with an empty
animation script. When you click on the toggle, it will change the visible state of the switch. This
technique can be used to display a custom checkmark in a toggle.

GLG Builder and Animation Tutorial 71
The toggle also has a TooltipString resource that defines the tooltip string displayed in the Run
mode.

Native Button Object

This is a native windowing system button object. It’s behavior depends on the operating system
(Linux/Unix or Windows), and also on the programming environment: it will look differently in
C/C++, Java and JavaScript. The name of the button is used as it’s label. You’ll have to reset the
drawing with the Reset toolbar button to see the label change.

Same as the custom button, the button has a TooltipString resource.

Native Toggle Object

This is a native windowing system toggle object. Same as a native button, it’s look and feel depends
on the environment it’s displayed in. The name of the toggle is used as it’s label. You’ll have to reset
the drawing with the Reset toolbar button to see the label change.

Same as the custom toggle, the toggle has a TooltipString resource and a OnState resource that
indicates it’s current state. The OnState resource may be set or queried from a program. Some
resources in the drawing, for example the Visibility attribute of an object in the drawing, may also
be constrained to the OnState resource, so that the toggle will change the object visibility when
activated.

Native Slider Objects

Slider objects (scrollbar on Windows) represent native windowing system sliders or scrollbars.
Their behavior depends on the environment the sliders will be displayed in.

The sliders have a Value resource that changes from 0 to 1 when the sliders are moved in the run
mode. The Value resource may be set or queried from a program. Some resources in the drawing,
for example a controlling factor of dynamics, may also be constrained to the Value resource, so that
a slider will animate the dynamics when the slider is moved in the Run mode.

3D Objects

3D Cube and Cylinder objects are built as collection of polygons that render a cubical or cylindrical
3D shape. To see the shape in 3D, you may need to rotate the view using the 3D rotation controls
in the Control Panel on the left.

The polygons are grouped, select the group and zoom down into it to edit individual polygons or
attributes. The color attributes of the polygons are constrained, so by changing the color of one of
polygons, all polygons change their color.

The corner points of the polygons are constrained, which makes it easier to edit the shape. For
example, select the cube’s group, click on the Select Next toolbar button and select one polygon
of the cube (you can use Shift-click when selecting to get a finer control over selecting).

72 GLG Builder and Animation Tutorial
Try moving the selected polygon with the mouse: the rest of the polygons will stretch to stay
connected.

Process Control Objects

Two samples of process control objects: a valve and a tank are provided in the Custom Object
palette. Both objects use a container object to encapsulate their sub-objects.

To edit graphical primitives of these models, zoom down into the container using the Hierarchy
Down button from the Control Panel, select the object, then zoom down once more to go down
into the group object.

The valve has Rotation dynamics attached to the moving element with the dynamics’ controlling
Factor named Angle. When the Angle parameter changes from 0 to 1, the valve gradually changes
from fully closed to fully open position.

The tank has the constrained move dynamics connected to the two moving control points, same as
the control point dynamics described in the Using Constrained Dynamics and Marked
Transformations section. The dynamics moves both points up or down when its controlling factor
named Level changes from 0 to 1. Set the BackgroundColor resource of the tank to match the
background color of the drawing.

Graph and Real-Time Chart Objects

Two graphs: a Line Graph and a Bar Graph are provided with the Graphics Builder. Additional
graph widget sets may be purchased, including Real-Time Charts, as well as 2D and 3D graphs.

Refer to the Using GLG Real-Time Charts chapter of this manual for details on how to use resources
of GLG Real-Time Charts. Refer to the Using Legacy GLG 2D and 3D Graph Widgets chapter for
details on how to use resources of GLG graphs.

Adding New Objects to the Custom Object Palette

New objects may be added to the custom objects palette by saving them in the
widgets/custom_objects directory. Refer to the Read Directory section of the GLG Graphics Builder
Menus chapter for more details.

GLG Builder and Animation Tutorial 73
4. Using GLG Drawings in a Program
To use GLG drawings created with the GLG Builder in a C/C++, Java, C#/.NET, JavaScript or
ActiveX environment, a number of GLG containers and APIs are provided:

GLG cross-platform API (C/C++/C#/Java/JavaScript)
GLG .NET Control (C#/.NET)
GLG Bean (Java)
GLG Control or MFC class (C/C++ on Windows)
GLG ActiveX Control (Windows)
GTK Widget (GTK version of the GLG C/C++ library)
GLG Wrapper Widget (legacy X11 version of the GLG C/C++ library)

Each of these containers encapsulates a GLG drawing for use in one of the programming
environments.

To use a GLG drawing in Java, C#/.NET or JavaScript, save the drawing using the default ASCII
save format to ensure accessed from any hardware platform. Use the default Save Compressed
option to decrease the size of the drawing file.

Loading a Drawing into a C or C++ Program
To use a drawing with a C/C++ program, it must contain a viewport named $Widget. This viewport
will be displayed when the drawing is loaded.

The specific method for loading the drawing depends on the programming environment used.

A C/C++ program may use the GlgLoadWidgetFromFile function or the LoadWidgetFromFile
C++ method to load a drawing in a platform-independent way. The drawing is then displayed by
using the GlgInitialDraw function or the InitialDraw C++ method.

In a Windows environment, either a GLG MFC control class or a Windows custom control may
be used to encapsulate a GLG drawing.

On Linux, a GtkGlg widget may be used to display a drawing, as shown in the example provided
in the integration/gtk3_glg_native directory of the GLG installation.

A GlgWrapper widget may be used to display a drawing in the legacy X11 version of the GLG
library. The XtNglgDrawingFile resource of the widget is used to specify the drawing to load.

Refer to the Displaying a GLG Drawing chapter of the GLG Programming Guide for more details.

Loading a Drawing into a Java Program
The Toolkit provides a GLG Bean Java component used to display and animate a GLG drawing in
a Java program. To use a drawing in a Java program, the drawing must contain a viewport named
$Widget. This viewport will be displayed when the drawing is loaded into the GLG Bean.

74 GLG Builder and Animation Tutorial
The GLG Bean provides parameters that specify either a filename or URL of a drawing to be
displayed. Setting one of these parameters loads the drawing and displays it in the bean. A GLG
Bean also has methods that allow to load the drawing from a file or a URL on demand under the
program’s control.

To load the drawing into the GLG Bean, set one of the following bean properties: DrawingName,
DrawingFile or DrawingURL. The DrawingName property may be set to either a filename or a
URL.

To load the drawing into a Java program, you can also use the LoadWidget method of the
GlgObject class or the LoadWidget method of the GLG Java Bean.

Loading a Drawing into a C#/.NET Program or GLG .NET Control
To use a drawing with a C#/.NET program and GLG .NET Control, it must contain a viewport
named $Widget. This viewport will be displayed when the drawing is loaded.

GlgControl has properties that define the drawing file to be displayed in the control. Setting one of
these properties loads the drawing and displays it in the control’s window. The control also has
methods that allow to load the drawing from a file on demand under the program’s control.

To load the drawing into the GlgControl, set its DrawingFile property to load and display the
drawing from a file. Use the DrawingURL property to load a drawing from a URL.

To load the drawing into a C# program, you can also use the LoadWidget method of the GlgObject
class or the LoadWidget method of the GlgControl.

Loading a Drawing into an ActiveX Control
To use a drawing with an ActiveX control, it must contain a viewport named $Widget. This viewport
will be displayed when the drawing is loaded.

The ActiveX control has the DrawingFile property that specifies a drawing file. Setting this
parameter loads the drawing. The control’s LoadWidgetExt method can also be used to load a
drawing.

The GLG ActiveX control also has the DrawingURL property for loading a drawing file from a
URL.

Refer to the Using the ActiveX Control chapter of the GLG Programming Guide for more details.

Loading a Drawing into a JavaScript Program Deployed on a Web Page
To use a drawing in a JavaScript program, it must contain a viewport named $Widget. This viewport
will be displayed when the drawing is loaded.

GLG Builder and Animation Tutorial 75
The drawing is loaded using the LoadWidgetFromURL method of the GLG JavaScript API. The
DEMOS_HTML5 and examples_html5 directories contain source code examples of using GLG
drawings in the HTML5 JavaScript environment.

Supplying Data for Animation from a Program
When the drawing is loaded into a C/C++, Java, C#/.NET or JavaScript program, or an ActiveX
Control, the GLG resource mechanism is used to access resources of the drawing and to supply new
resource values for animation, in the same way you did when prototyping the drawing in the
Builder.

All GLG containers for different programming environments provide SetResource methods for
setting named resources in the drawing. The resources may be of the D (double), S (string) or G
(XYZ or RGB triplet) type. The names and syntax of methods slightly differ depending on the
programming environment used (C/C++, Java, C#/.NET, JavaScript or ActiveX), but they are used
the same way in all environments. The Update method is used to redraw changes on the screen after
setting the new resource values.

For example, the following fragment from the GLG Animation examples “blinks” the object 3 times
by alternating it’s color:

// Change the ColorIndex of the color dynamics attached to
// the object’s FillColor attribute from 0 to 1 and back
// to blink.
for(j=0; j<6; ++j)
{

GlgSetDResource(viewport, “CatchMe/ColorIndex”, (j % 2) ? 1. : 0.
);

GlgUpdate(viewport);
GlgSleep(100); // Delay for 0.1 sec

}

In this example, the GlgSetDResource method is used to set the new value of the
“CatchMe/ColorIndex” resource, and the GlgUpdate method is used to update the graphics making
the changes visible.

Refer to the GLG Programming Guide for more details.

Source Code Examples
The GLG examples_c_cpp directory contains C and C++ source code for a simple GLG animation
examples that shows how to load and display a drawing, animate it with data and handle user
interaction with the drawing.

DEMOS directory contains source code for more elaborate C/C++ demos: an aircombat simulation,
a GIS map demo, a diagram editor demo and others.

DEMOS_JAVA directory contains the source code of Java demos.

76 GLG Builder and Animation Tutorial
DEMOS_C# directory contains the source code of the C#/.NET demos.

DEMOS_HTML5 directory contains the source code of the HTML5 and JavaScript demos.

examples_c_cpp directory contains C and C++ source code examples.

examples_java directory contains Java source code examples.

On Windows, additional examples listed below are also available.

examples_csharp.NET contains C# examples that use the GLG C# Class Library.

examples_csharp_ocx and examples_vbnet_ocx directories contain .NET examples that use the
GLG ActiveX Control.

examples_ASP.NET and examples_jsp directories contain examples of the GLG Graphics Server
for the ASP.NET and JSP. These demos are also available on-line at the following link:
http://www.genlogic.com/ajax_demos.html

GLG Builder and Animation Tutorial 77
5. Creating the Animation Example’s Drawing
This section explains the design of the drawing used for the GLG Animation example in the GLG
examples directory. To learn how the drawing is built, this section lists step-by-step instructions for
building the drawing from scratch. It is assumed here that you’re already familiar with the basic
GLG Builder navigation described at the beginning of this tutorial.

The drawing we’ll be building here will display a bouncing ball with an attached X and Y move
dynamics that is used to animate the ball’s movement. The ball also has a Fill Color dynamics that
is used to flash colors when the ball is hit with the mouse.

Creating a Drawing’s Viewport

To create this or any other GLG drawing that will be used with a program, start with a new widget
(File, New Widget): this will create a new viewport and bring the editing focus into it.

Use the Properties toolbar button to bring up the viewport’s Properties dialog and click on the
Screen Properties button. Set Stretch XY=NO to preserve X/Y ratio of the drawing: we are going to
create a circle object and this will prevent the circle from being “squished” when the drawing is
resized. Set PushIn=YES: this makes the default [-1000;+1000] coordinate extent to always appear
in the viewport’s window regardless of its X/Y ratio.

Creating a Circle Object

Create a small circle in the center of the drawing by clicking on Filled Circle from the Object
Palette and selecting two points in the drawing area: the first point will define the circle’s center
and the second will define its size. Position the circle in the center of the drawing by selecting the
drawing’s center as the circle’s center point, or moving the circle after it has been created.

Use the Properties toolbar button to bring up the Properties dialog and name the circle
CatchMe. Change the circle’s HasResources flag to YES to define the resource hierarchy: all
circle’s resources will be referenced by using a “CatchMe/” path prefix.

Adding Color Dynamics

Click on the ellipsis button next the Fill Color attribute to activate the Attribute dialog, then
select the Add Dynamics button at the bottom of the dialog. Select List from the list of color
dynamics choices. This will attach the list color dynamics to the circle’s Fill Color attribute and will
bring up the Edit Dynamics dialog showing the dynamics we just attached.

Type the ColorIndex name in the right-most field for the dynamics’ Value Index parameter. This
resource name will be used to change the color displayed. The value of 0 will display the first color,
the value of 1 will display the second color, and so on.

Select the ellipsis button next to the List of Values to display the list of colors. Select the first
item in the list and define it’s color by selecting a red color from the palette, then select the second
item and select a yellow color.

Try changing the value of the Value Index parameter from 0 to 1: the circle’s colors should change
from red (0) to yellow (1). Restore the index value to 0 and close the dialog.

78 GLG Builder and Animation Tutorial
Adding the Move Dynamics

Make sure the circle object is still selected and click on the Add Dynamics toolbar button to
bring up the Add Dynamics dialog. Set the transformation type to MoveBy at the top of the dialog,
set Move Direction=X and hit Apply. This attaches a MoveX transformation to the circle and brings
up the Edit Dynamics dialog showing its attributes.

Set XDistance=0 and name the attribute XValue in the Name field to the right of it - this name will
be used to set the set the X movement amount when animating the object. Set relative Factor=1, so
that the effective movement value (defined as the multiplication of the Factor and XDistance) is
completely controlled by the XDistance attribute.

Click on the Add Dynamics toolbar button again, change Move Direction to X and hit Apply.
This attaches a MoveY transformation to the circle. Set YDistance=0 and name the attribute YValue.
Set Factor=1.

The MoveX and MoveY transformations will be used to animate circle’s movements by changing
their XValue and YValue resources.

Close the Edit Dynamics dialog.

Creating an Area Polygon

Unselect the circle by pressing the ESC key and select Options, SnapTo, To Grid from the main
menu to make it easier to create a rectangular polygon.

Use the Closed Polygon Object Palette icon and select 4 points in the drawing to create a
rectangular polygon as shown in the following picture:

Bring up the Properties dialog for the polygon, name it Area and set its HasResources=YES. Shift-
click on the polygon’s lower left control point to bring its Control Point Editing dialog and name
the point LLPoint. Shift-click on the polygon’s upper right control point and name it URPoint. These
names will be used by the program to access the points, to query the extent of the Area polygon.
The program will then use the extent to animate the circle, moving it within the Area boundaries.

Close the dialogs.

GLG Builder and Animation Tutorial 79
Adding Buttons

Click on the Custom Objects icon in the Object Palette to bring up the Custom Objects dialog
and select a Button object from the dialog. This will paste a native button object into the drawing.
Place two buttons at the bottom of the drawing and name them Slower and Faster. These buttons
will be used to change the moving ball’s speed when the user clicks on a button. Reset the drawing
by clicking the Reset toolbar button to force the buttons to display the new names.

Click the Resources toolbar button to bring up the Resource Browser, double-click on the
Faster resource, then select the TooltipString resource and set it’s value to Increase Speed. This
value will be used to display the Faster button’s tooltip in the run mode.

Double click on the “..” item in the Resource Browser to return to the top level, double-click on the
Slower resource, and set it’s TooltipString to Decrease Speed.

Testing the Tooltips

Reset the drawing by clicking the Reset toolbar, and select the Start toolbar button to
prototype the drawing. Enter an empty animation script and hit OK to start prototyping. Position the
mouse over one button then another and wait to see the tooltips coming up. Stop the prototyping by
clicking on the Stop toolbar button.

Using the Drawing

We now finished creating the drawing. Rename the old animation.g drawing in the GLG’s examples
directory to animation_bak.g and save the drawing as animation.g in the examples directory by
using File, Save As from the main menu. You should now be able to run the example using the new
drawing.

If you get errors running the example with the new drawing, check the spelling, letter capitalization
and resource paths of resource names reported in the error messages. Use the Resource Browser to
check the names in the Builder: the names and resource paths should appear exactly like they are
reported in the error messages for the resources that aren’t found.

80 GLG Builder and Animation Tutorial
6. Using GLG Real-Time Charts
The Real-Time Charts widget set contains a collection of high-performance charts optimized for
real-time rendering of large data sets. They use an integrated Chart object that enables fast
rendering with support for integrated zooming and scrolling, chart tooltips and cursor feedback.

Editing Chart Properties in the Builder

The run-time behavior and appearance of a chart widget is controlled by the properties of the Chart
object contained in its drawing. While these properties can be set in a program at run-time, the chart
can be customized using the Graphics Builder, saving a modified drawing into a file.

Loading Charts into the Builder

The Real-Time Charts palette contains various real-time chart widgets. To load a chart into the
Builder, select Palette, Real Time Charts from the main menu to display the palette, then Ctrl-click
on a chart in the palette to load it. Press OK to discard the current drawing.

When a chart is loaded using Ctrl-click, the drawing will also contain a sample animation command
that can be used to prototype the chart in the Run mode.

To add a chart to an existing drawing without replacing the drawing’s content, click on the chart in the palette without
holding down the Ctrl key. Refer to the Loading Widget Drawings into the Builder section on page 45 for more
information.

Editing Chart Properties

A chart widget consists of a viewport named $Widget which contains objects used to render the
widget: the Chart object, a text object named Title and an optional Legend object for multi-line
charts.

The Chart object defines the appearance and run-time behavior of the chart; its properties are used
to edit the chart. The Public Properties dialog provides a convenient way to access the chart’s
properties. Click on the $Widget viewport to select it, then use either the Public Properties toolbar
button , the Public Properties popup menu option, or the Object, Public Properties menu option
to bring the Public Properties dialog.

The dialog will have the Edit Chart button for accessing properties of the Chart object inside the
widget. The Edit Legend button will also be present for charts that have a legend. The dialog will
also have the Background button for accessing rendering properties of the viewport, and the Offsets
button for changing offsets that control layout of the Chart and Legend objects inside the widget.

Click on the Edit Chart button to bring the Selected Object Properties dialog showing the Chart’s
properties. Use the dialog’s menus to edit the Chart’s properties (see the Editing Object Properties
section on page 14 for details).

Refer to the Chart chapter on page 124 of the GLG User’s Guide and Builder Reference Manual for
a description of the Chart object’s attributes. Attributes of the chart’s Plot, Axis and Legend objects
are described on page 133, page 143 and page 153 of that manual.

GLG Builder and Animation Tutorial 81
Click on the Back button to return to the Public Properties dialog.

Alternatively, the Chart and other objects inside the widgets can be edited directly. Make sure the
$Widget viewport is still selected, then click on the Hierarchy Down button to go “down” into
it. Click on the chart’s data area to select the Chart object: it’s name (Chart) and type (CHART) will
be shown in the status area at the bottom of the Builder. The chart’s control points can be used to
change the chart’s layout (see the Selecting an Object and Changing Object Geometry section on
page 12 for details).

Use the Properties toolbar button to bring up the Selected Object Properties dialog showing the
chart’s properties. Alternatively, you can use the right mouse button and select Properties from a
popup menu, or Object, Properties from the main menu. The Selected Object Properties dialog can
be used to edit chart’s properties and is the same dialog that was accessed using the Edit Chart
button in the previous example. The Title and Legend objects can also be selected and edited.

Use the Hierarchy Up button to get back to the top level.

Editing Chart Plots and Axes

Use the Edit Chart button is the Public Properties dialog to access chart’s properties as described
above. To access properties of the chart’s plots, use the Edit Plots button. It will display a dialog
with a list of plots; selecting a plot will display its properties in the Selected Object Properties
dialog. Use the Edit Line button to get access to the plot’s rendering attributes, such as EdgeColor,
LineWidth and LineType.

Use the Back button at the bottom of the dialog to get back to the chart’s properties.

Similarly, the Exit Y Axis button provides an access to the properties of the chart’s Y axes and
activates a list dialog for selecting a Y axis.

Properties for Supplying Chart Data

Each plot in a chart has three properties for supplying data:

• Value Entry Point for supplying Y values

• Time Entry Point for supplying time stamps for real-time Strip Charts, or X values for XY
Scatter Plots

• Valid Entry Point for supplying data points’ Valid flags

The entry points are present in the Plot object’s properties dialog; they can also be accessed via
resources in a program to supply chart data at run time. Refer to the Plot chapter on page 133 of the
GLG User’s Guide and Builder Reference Manual for a detailed description of a plot’s entry points.

Editing Charts Using Resources

The chart widget can also be edited using resources. Resources are also used in a program to
configure the chart and supply its data at run time.

82 GLG Builder and Animation Tutorial
In the Builder, resources can be accessed via the Resource Browser, which can be used to traverse
the chart’s resource hierarchy and modify the chart’s properties via the resource mechanism.

To browse chart’s resources, go to the top level and click on the chart widget’s $Widget viewport to
select it (use the Hierarchy Up button to get back to the top level if necessary). Click on the
Resources toolbar button to open the Resource Browser; it will display a list of the chart’s
resources.

Resources are organized hierarchically: a list of chart resources contains Chart and LegendObject
resources, which are composite objects containing other resources inside. Such composite resources
are annotated with the >> suffix added to their names. Double-clicking on such composite
resources shows resources inside them. For example, double-clicking on Chart, Plots, Plot#0 shows
resources of the chart’s first plot. Selecting the EdgeColor resource activated a dialog with a color
palette to edit the resource’s value.

The Resource Browser provides a convenient interface for determining proper resource names that
will be used in a program to set the chart’s properties and supply data at run time. For example, the
ValueEntryPoint, TimeEntryPoint and ValidEntryPoint resources of each plot are used to supply
data at run time. When each of these resources is selected in the Resource Browser, the complete
resource path is shown in the Selection field at the top of the Resource Browser dialog. This
resource path is used in a program to access the corresponding resource at run time.

Double-click on the “..” entry to return to the previous level of the resource hierarchy, one level at
a time. Alternatively, click on the chart in the drawing to get back to the top level.

Refer to the Using Resources chapter on page 315 of the GLG User’s Guide and Builder Reference
Manual for more information on using resources.

Prototyping the Chart’s Run-Time Behavior

To animate the chart with simulated data, click on the Start toolbar button, then press OK to
accept the default animation command. It will start the Run Mode and animate the chart with data
generated by the default animation command supplied in the chart’s drawing (the chart widget must
be loaded by Ctrl-clicking in the Real-Time Charts palette in order for the animation command to
be present in the drawing).

The Run Mode toolbar contains controls that control the update speed and display performance
data. The Pause button pauses data updates, which makes it easier to test chart tooltips. Moving
the mouse over the chart activates a cross-hair cursor lines that follow the mouse. A tooltip for the
closest data point is displayed when the mouse hovers over a plot. An axis tooltip is displayed when
the mouse hovers over a chart axis.

Use the Stop button to return to the editing mode.

GLG Builder and Animation Tutorial 83
7. Using Legacy GLG 2D and 3D Graph Widgets
The 2D Graphs and 3D Graphs widget sets contain a variety of graph widgets that compliment the
Real-Time Charts widget set. While the Real-Time Chart widgets provide superior performance and
advanced interaction capabilities, the 2D and 3D graphs may provide more elaborate rendering as
well as additional graph types, such as packed, stacked and polar charts.

The below is a brief overview of 2D and 3D Graph widget usage. See the 2D and 3D Graphs chapter
on page 38 of the GLG Widgets Reference Manual for more information.

Loading Graph Widgets into the Builder

To load a graph widget into the Builder, select Palettes, 2D Graphs or Palettes, 3D Graphs from
the main menu, then Ctrl-click on a graph in the palette to load it. Press OK to discard the current
drawing.

When a graph widget is loaded using Ctrl-click, the drawing will also contain a sample animation
command that can be used to prototype the graph in the Run mode.

To add a graph to an existing drawing without replacing the drawing’s content, click on the graph in the palette without
holding down the Ctrl key. Refer to the Loading Widget Drawings into the Builder section on page 45 for more
information.

Two sample graphs, bar1.g and line1.g, are provided in the Custom Objects palette (the Custom
Object icon in the Object Palette).

Common Graph Resources
While the graphs have a lot of resources for customization, most of them have a common resource
set that controls the graph:

Data Supply Resources
DataGroup/EntryPoint

Entry point for supplying graph data
XLabelGroup/EntryPoint

Entry point for supplying graph labels

Title resources:
Title/String

Graph’s title
XAxisLabel/String

X axis title
YAxisLabel/String

Y axis title

DataGroup Resources:
DataGroup/Factor

Number of graph datasamples
DataGroup/ScrollType

84 GLG Builder and Animation Tutorial
Graph’s scroll type: 0 - wrap, 1 - scroll
DataGroup/Inversed

Graph’s scroll direction
DataGroup/DataSample/High

Graph’s high range
DataGroup/DataSample/Low

Graph’s low range Range resources

Axis Label Resources
YLabelGroup/YLabel/Format

C format for label display YLabels Resources
YLabelGroup/Factor

Number of labels and major ticks for Y axis
YLabelGroup/MinorFactor

Number of Y minor ticks X Label Resources
XLabelGroup/Factor

Number of labels and major ticks for X axis
XLabelGroup/MinorFactor

Number of X minor ticks

Refer to the GLG Widgets Reference Manual for a complete resource list.

Graphs with Multiple Data Groups
You can use graphs other than the basic bar1.g and line1.g to display more than one data set or
display data in 3D.

Graph Widget Animation Examples
Examples in the Supplying Data for Animation from a Program section on page 75 lists some
typical resources that are used to animate the GLG graphs.

Additional C/C++ source code examples may be found in the examples_c_cpp directory of the GLG
installation. Java examples are located in the examples_java directory, and .NET examples are
located in the examples_csharp.NET, examples_csharp_ocx and examples_vbnet_ocx directories.
The examples_html5 directory contains HTML5 and JavaScript examples.

GLG Builder and Animation Tutorial 85
8. Using Containers and SubDrawing Objects
Containers and SubDrawings represent two types of wrapper objects that may be created around a
group of objects. They have a single control point that defines their position and are often used as
wrappers around complex objects, such as nodes or icons, making it easier to position them.
Containers and SubDrawings are subtypes of the Reference object.

All drawings described in the tutorial may be found in the <glg_dir>/tutorial directory. These
drawings may be used to verify the final result of the steps described in the following chapters.

Container Object
A Container object is the simplest wrapper for positioning complex objects. Let’s try to create one
and see how it is used.

Creating a Template

Start with a new drawing by selecting File, New Widget from the main menu. Using the Filled
Polygon button, create a filled triangle centered around the center of the drawing (the center of
the drawing is marked with the axis icon). Bring the polygon’s Properties dialog, name it Polygon
using the Name field. The polygon’s HasResources=NO.

Let’s add rotation dynamics to the polygon. Click on Add Dynamics button and select Rotate for
transformation type in the Add Dynamics dialog. Set Rotation Axis to Z to rotate in the XY plane of
the drawing. Set Center parameter to “0 0 0”, which coincides with the center of the polygon. At
this point, it doesn’t matter what the Angle parameter is set to.

Click on Apply to attach the transformation; the Edit Dynamics List dialog will come up. Set the
Factor parameter to 1. Set ZAngle parameter to 0 and name this parameter Angle. Click on OK to
close the dialog.

Make sure not to move the polygon with the mouse at this point, since it will distort its position
relatively to the rotation center. Later on in this chapter, we’ll talk about preserving the position of
rotation center relative to the object, so that it is not affected by the object move.

Create a fixed text object with a text label and position it below the triangle. Bring its Properties
dialog and name the text object Label. Click on the ellipsis button next to the TextString attribute to
bring its Attribute dialog, and name the attribute LabelString using the Name field.

Click on the Group button and create a group object containing both triangle and label objects.
Bring its Properties dialog and name the group IconGroup. Notice its HasResources=NO setting.

You can think of this group object as a graphical icon composed of a triangle and a label. The
triangle may represent some live object (for example, an airplane) and the label may be used to
display some textual information next to it, such as a flight number. The triangle may be rotated
around its center to annotate airplane’s current direction. When such icon is used in a program, it
needs to be positioned at the exact latitude/longitude coordinates of the airplane it represents. It

86 GLG Builder and Animation Tutorial
would be convenient to be able to position the icon by setting coordinates of a single control point,
which could be accessed as a resource from the program. A container object does exactly that - it
allows to create a “wrapper” around a group of objects, with a single point to position it.

Creating a Container Object

While the group object is selected, create a container object by clicking on the Container
button in the Object Palette. Define a position of the container’s control point by clicking in the
center of the triangle - the control point will be attached at that place.

Bring up the container’s Properties dialog and notice that its ReferenceType is set to Container.
Name the container Icon and set its HasResources=YES. Notice the FixedSize property which, if set
to YES, may be used to create icons of a fixed size. The fixed size containers do not resize when
the drawing is zoomed or resized, even if the drawing itself is resizable. The only way to change the
size of a fixed size container is by editing or scaling its template.

Shift+click on the control point to bring its Control Point dialog and name the point Position. Try
changing the coordinates of this point to “200 0 0”. The object will move, with its control point (the
center of the triangle) placed at the location (200,0,0). The Position resource may be accessed from
a program to position the icon.

With the Icon object selected, select Object, Resources from the main menu (or Resources
toolbar button) to bring the Resource Browser. It will show the following resources of the Icon:

• Position, defines the icon’s position
• LabelString, defines the text string of the label displayed below the icon
• Angle, defines the triangle’s rotation angle
• Polygon, provides an access to the triangle’s attributes, such as FillColor, etc.
• Label, provides an access to the triangle’s attributes, such as FillColor, etc.
• Template and Origin resources, which will be explained later.

Notice that even though LabelString and Angle resources are parameters of the group’s text and
polygon object respectively, they are visible at the Icon level, since HasResources=NO for both the
text, the polygon and the group. It makes the resources visible at the container’s level, making it
possible to access them as Icon/LabelString and Icon/Angle. This is convenient, as we can access
icon’s attributes without knowing its exact object hierarchy.

Set the LabelString resource to Plane 1100, set the Position resource to “400 0 0”, and change
Polygon/FillColor resource to red using a color palette. The icon will move to a new position and
will be displayed in the new color. The icon’s label will display a new text as well. When the
drawing is deployed in a program, the same resource settings can also can be done
programmatically using the GLG API to update the icon with real-time data.

Set the Angle resource to 30. Notice that although the icon has moved, the polygon is still rotated
around its center, meaning that the relative position of the rotation center is preserved when the
object moves. In fact, the container object preserves the relative position of rotation center by
moving both the object and the rotation center, so that their position relatively to each other does
not change. The same is true for the scale center if a scale transformation is used.

GLG Builder and Animation Tutorial 87
The Resource Browser also displays the container’s Origin and Template resources. The Origin
defines the attachment position of the container’s control point.

The group object used to create the container is called a template, and is displayed as a Template
resource in the Resource Browser. For the container object, the Template and IconGroup resources
displayed in the Resource Browser refer to the same object: the group containing the triangle and
label objects. Template is a default resource name which may be used to access the container’s
template when it is unnamed. In our case, since we set template’s HasResources=NO to make its resources visible
at the level of the container object, both the Template and IconGroup show no resources inside them in a resource browser.

Creating Container Instances

Let’s try to make multiple instances of the icon. Create a copy of the Icon object by selecting Edit,
Full Clone (or using the Ctrl+L key). The copy will be selected. Position it in the drawing using the
mouse, then bring its Properties dialog and name it Icon2. Click on the Resources toolbar button
to display Icon2’s resources, and set the resource values as follows:

Position = 400 400 0
LabelString = Plane 1200
Angle = 0
Polygon/FillColor = yellow color from the color palette.

The copy will reflect the new resource values. The changes are persistent: if you save the drawing
and load it back, or reset it using the Reset toolbar button, the resource setting will be preserved for
both the Icon and Icon2 objects.

Save the drawing as container.g.

Editing Container’s Template

While resources provide a way to access the template’s attributes, the container’s template is still
accessible for direct editing, such as changing triangle’s geometry or changing the position of the
label object. Let’s try to edit the Icon2’s template.

Select the Icon2 object with the mouse and click on the Hierarchy Down button to go “down”
into the container. The container’s template will appear in the center of the drawing. Click on the
triangle: it will select the group object which holds the triable and the label. Click on the Hierarchy
Down button again to go down into the group. Select the triangle and move one of its control
points to change the triangle’s shape. Click on the Hierarchy Up button twice to get back to the
drawing level, the Icon2 object will be selected again.

Notice that only the Icon2 instance changed, and the Icon object was not affected by the change.
That is because each instance of container objects keeps its own, unique copy of the template,
allowing each instance to modify it. That is not true for the SubDrawing object discussed below,
which shares the template between the instances.

When traversing down into the container’s template, the Origin attribute may also be edited directly. The Origin
is displayed as a round marker, which can be selected and moved with the mouse. The template is drawn above
the Origin, so in our case it will obscure it. To make the Origin marker visible, select the template and reorder
it using Arrange, Reorder, Move To Back. The round marker will become visible in the center of the drawing.
If you move it to one of the triangle’s corners, the container’s control point will now be attached at that corner

88 GLG Builder and Animation Tutorial
when you go back up. The attachment point of the container’s control point may also be changed by moving
the control point with the mouse while simultaneously pressing both the Control and Shift keys.

SubDrawing Object
A SubDrawing object is a more complex wrapper object used to replicate instances of a shared
template in a drawing or in multiple drawings. The template is shared among the instances and can
be changed in one place for all of them. There are three types of subdrawing objects that differ in
the way they store their template: included subdrawings, file subdrawings and palette subdrawings.

Included SubDrawing

Included SubDrawings store the template in the drawing and replicate instances of the template in
the drawing. Since the template is stored in the drawing, changing the template will affect only
subdrawings in the current drawing.

Reusing a Template from the Previous Example

Let’s create an included subdrawing using the template from the previously saved container.g
drawing. Load the drawing using File, Open, select the $Widget viewport and traverse down into it
using the Hierarchy Down button. Select the Icon container object and traverse down to its
template as well. Click on the triangular polygon to select the group object containing both the
polygon and the label. Click on the Copy toolbar button to copy the group object.

Create a new drawing using File, New Widget. Click on the Paste toolbar button to paste the
group object into the drawing: it will be placed in the center of the drawing, the same way as in the
original drawing. We are going to use it as a template for a subdrawing object we are about to create.
Bring its Properties dialog and set its HasResources=YES, so that all template resources are visible
at the template’s level.

Creating a SubDrawing

To create an included subdrawing with the IconGroup object as its template, make sure the
IconGroup is selected and click on the SubDrawing From Object button in the Object Palette.
Click in the center of the triangle to select an attachment point (if you want to position it exactly in
the center of the drawing, click on the Point Value button and enter “0 0 0”). A text entry dialog
will come up prompting you to enter ObjectPath and OriginPath. Press OK to use defaults for now.

Bring the Properties dialog of the created subdrawing object. Name it Icon and set its
HasResources=YES. The following properties are present in the subdrawing object’s Properties
dialog:

• ReferenceType=SubDrawing (as opposed to Container)
• Source=Template, meaning that a template is saved with the drawing
• SourcePath= ‘blank’ (defines a template path when Source is set to File or Palette)
• ObjectPath= ‘blank’ (defines an icon path inside a template with several icons)
• CloneType= STRONG, defines what resources, if any, are constrained among the instances.

If CloneType=STRONG (default), resources that are Global will be constrained.

GLG Builder and Animation Tutorial 89
Click on the Resources toolbar button to display resources of the Icon object we just created.
The resource browser shows a list of Icon’s resources, with the new Source, SourcePath and
ObjectPath resources added to the list. The list also shows the Template resource, which is the
IconGroup template object. There is also a new resource called Instance, which is a copy of the
IconGroup template; it is used to render the subdrawing’s instance. Resources of the Instance can
be changed dynamically to animate each instance with corresponding data values.

For a subdrawing, the template is shared between all instances of the subdrawing object, and each
instance creates a copy of the template and then uses it for rendering. This is a major difference
between a container and a subdrawing. Each instance of a container object has its own
independent copy of the template, while all instances of a subdrawing share the template.

Since both the template and its copy have the same name (IconGroup in our case), the Template and
Instance default resource names provide a way to access both the template and its rendered copy
via the resource mechanism. The IconGroup resource in the resource browser refers to the copy of
the template, which is the same object as the Instance resource.

Only the template is saved with the drawing, while an instance is created dynamically during
hierarchy setup by making a copy of the template. It means that when a drawing is deployed in
an application, an Instance and its attributes are accessible only after hierarchy setup.

The subdrawing creates a copy of its template at the hierarchy setup time. Before the hierarchy setup, the value
of the Instance resource is null. After the hierarchy setup, the Instance resource is not null, and the IconGroup
resource refers to the Instance object.

Double-click on the Template resource in the resource browser to see the list of its resources. Since
IconGroup has HasResources=YES, the resources are visible at the template level. Double-click on
the “..” entry in the resource list to go back to the resources of the Icon object, and double-click on
the Instance resource: it contains the same set of resources as the template, but they refer to
resources of the template copy, which is rendered on the screen. If you change the
Polygon/FillColor resource of the Instance, it will be immediately reflected on the screen.

For subdrawings, the resources of both the template and its copy may need to be accessed, which is
done via Template and Instance resources. Both Template and Instance have the same set of
resources. Setting the template’s HasResources=YES ensures that resources of both the Template
and the Instance are accessible as resources of the corresponding object: Template or Instance. For
example, the Template/Polygon/FillColor resource path may be used to access the fill color of the
template polygon, and the instance’s colors may be accessed using either
Instance/Polygon/FillColor or IconGroup/Polygon/FillColor resource path.

Creating SubDrawing Instances and Editing the Template

Let’s make a copy of the Icon object by selecting Edit, Full Clone (or using the Ctrl+L key). It will
create a copy of the subdrawing object using the same template. The copy will be selected. Position
it in the drawing using the mouse, then bring its Properties dialog and change its name to Icon2.

With the Icon2 still selected, click on the Hierarchy Down button to get down to the
subdrawing’s template, the IconGroup object.

90 GLG Builder and Animation Tutorial
Click on the triangular polygon to select the group. Click on Hierarchy Down button again to go
down into the group. Click on the triangle to select the Polygon object. Bring its Properties dialog,
click on the ellipsis button next to its FillColor resource and change the color to blue using a
color palette.

Go up the hierarchy by clicking on the Hierarchy Up button twice to return back to the drawing,
the Icon2 object is selected.

Notice that the color of the triangle for both Icon and Icon2 objects has changed to blue, reflecting
the change made to the template.

Let’s try to change the template using resources. Bring the resource browser for the Icon2 object and double-
click on Template. Double-click on Polygon, then select FillColor and set it to green. Notice that the colors of
subdrawings in the drawing did not change. That is because we changed the template, but the copies of it used
for rendering by subdrawing instances did not change. Click on the Reset toolbar button: this will
reinitialize the drawing, recreating template instances by copying the template with the new color, which is now
shown on the screen. When we edited the template using the Hierarchy Down button, the drawing was reset
automatically when we returned back up, without the need to use the Reset button. Traversing the hierarchy is
the preferred way of editing the template.

Change the color back to blue and reset the drawing.

Let’s try to change attributes of a cloned template instance. The Instance is not persistent and is
recreated from the template every time the drawing is loaded or reset, so it can not be edited by
traversing down to it. The only way to access it is using resources. Bring the resource browser for
the Icon2 object, double-click on Instance, then change Polygon/FillColor to red. The color of the
triangle in the Icon2 object has changed to red, while the triangle of the Icon object remained
unchanged. This is different from changing the template’s color: changing the color in the template
changes all instances, while changing the color of a particular instance (Icon2) affects only that
instance.

When subdrawings are used in an application to replicate some template, the application can change
instance’s attributes based on real-time data to implement icon dynamics. For example, if our
template is used to represent an airplane, the LabelString and Angle attribute of each instance can
be dynamically changed to indicate airplane’s direction and flight number.

Now reset the drawing using the Reset button. The subdrawings will recreate the displayed
instances by copying the template, and any changes made to the instances will be discarded.

While all changes made to the objects in the template are permanent and saved in the
drawing, changes made to the instances are volatile and are lost when the drawing is saved
and then reloaded, or when it is reset in the Builder.

Fixed Size SubDrawings

Same as for containers, the FixedSize attribute of a subdrawing object may be used to create icons
of a fixed size. Fixed size subdrawings do not resize when the drawing is zoomed or resized, even
if the drawing itself is resizable. However, a scale transformation can be attached to a subdrawing’s
template, and the scale factor of the transformation may be used to change the size of the
subdrawing instances. This technique is used in the GLG AirTraffic Control and GLG GIS demos
to change the size of the fixed-size airplane icons.

GLG Builder and Animation Tutorial 91
Rebinding Attributes of a SubDrawing

All instances of a subdrawing object in a drawing share the same template, causing them to be
rendered using the same attribute values on initial appearance. There are cases, however, when it is
desired that each subdrawing’s instance in the drawing has its own settings of certain resources, and
that these settings are saved in the drawing. It would mean that when the drawing is loaded, these
resource values are preserved and not overwritten by the template.

It can be achieved by using attribute rebinding. To make an attribute value of a subdrawing instance
persistent, that attribute has to be marked in a template by setting its Global flag value to Bound.
Such marked attributes may have different settings for individual instances. The settings get saved
in the drawing and restored when the drawing is loaded.

Let’s see how to use this feature. Make sure the Icon2 object is still selected, go down into it by
clicking on the Hierarchy Down button. Select a group and go down into it as well. Select the
triangle, bring its Properties dialog and click on the ellipsis button next to its FillColor
attribute.

In the Attribute dialog, change the Local setting to Bound. Bound attributes must be named, so name
the attribute IconColor using the Name field.

Go up the hierarchy twice, so that the Icon2 object is selected again. Bring the Properties dialog for
the Icon2 object, and notice that the Edit Bindings button is now enabled, providing an access to the
binding array which holds values of rebound attributes.

Click on the button to see a list of bindings with the IconColor entry. Click on IconColor and change
the color to yellow. The bindings array may also be accessed as the Bindings entry in the resource
browser. Bring the resource browser for the subdrawing object and double-click on Bindings: you’ll
see the same list of bound resources.

Please note that the rebound color attribute might have been accessed via the resource browser using
a resource path containing any combination of default attribute names and named resources (for
example, Icon2/Instance/IconColor or Icon1/IconGroup/Polygon/FillColor) to achieve the same
result, but editing bindings is more convenient, as it shows a single list of all bound attributes that
can be assigned a custom value.

Reset the drawing using the Reset button. Since polygon’s FillColor is now Bound, its value is
taken from the bindings array and is not discarded as a result of the reset operation. Likewise, this
setting will be preserved when the drawing is saved and reloaded.

In addition to altering appearance of individual instances in the drawing, the bindings may also be
used for assigning unique tags to each instance. Since all instances are cloned from the same
template, defining a tag in a template would result in the same tag being assigned to each instance.
If different instances need to be connected to different data sources via tags, rebound attributes may
be used, and unique tags may be assigned to each rebound attribute in the Bindings array.

The bindings may also be used to constrain attributes of each instance to attributes of other objects
in the drawing, as well as assign new names to rebound attributes.

92 GLG Builder and Animation Tutorial
Using Global Attributes

While some attribute settings, like airplane’s icon Angle or LabelString, may need to be unique for
each icon instance, other attributes, such as label color, may need to be constrained among all
instances, so that the attribute’s value can be changed in one place for all instances. To achieve this,
the label’s TextColor attribute must be defined as Global.

With the Icon2 object still selected, go down into it, then select the group and go down into it as
well. Click on the text object to select the Label object. Bring its Properties dialog and click on the
ellipsis button next to its TextColor. In the Attribute dialog, change the Local setting to Global.

Go up the hierarchy twice, so that Icon2 is selected again. Bring the resource browser, select
IconGroup/Label/TextColor and change it to dark blue.

Notice that the label color for both icons has changed.

Attributes marked as Global are constrained among all instances, including the template. Resource
values applied to Global attributes of one instance (or the template) are reflected in all other
instances, as well as the template.

Reset the drawing. The label color remains dark blue for both icons. It is not discarded, unlike the case when
the attribute was Local.

To summarize the attribute settings topic for a subdrawing object, an attribute of a template
can be marked as Local, Global or Bound. Each setting has the following meaning:

• Local attributes are unique for each instance and their settings for individual
instances are not saved in the drawing.

• Global attributes are constrained among all instances. Their settings affect all
instances, including the template.

• Bound attributes are unique for each instance, and their settings for individual
instances are saved with the drawing. The instance’s Bindings property contains a list
of all bound resources. Bound resources must be named.

To proceed with the tutorial for subdrawing objects, we will continue working with the same
drawing and modify it as necessary. Let’s save the drawing as included_subdrawing.g.

Object Dynamics

When the subdrawing object was created, we used the default settings of the ObjectPath attribute.
The ObjectPath attribute may be used to implement object dynamics, with a template containing
several different objects to represent different states of an icon. The use of the ObjectPath attribute
is discussed in the Object Dynamics chapter on page 95.

File SubDrawing

A file subdrawing is similar to an included subdrawing, but keeps its template in a separate drawing
file, making it possible to share the template between multiple drawings. Changes applied to the
template drawing will be reflected in all drawings that use it.

The below steps describe how to create a file subdrawing.

GLG Builder and Animation Tutorial 93
Reusing a Template

We will reuse the template of the icon we have already created. Select the Icon object, go down into
it, select IconGroup and copy it by using either the Edit, Copy menu option or the Copy toolbar
button.

Select File, New menu option to create a new drawing. Please notice the use of File, New instead of
File, New Widget. Since we are going to use the drawing as a template, we do not need the $Widget
viewport.

Select Edit, Paste to paste the IconGroup object, then save the drawing as icon.g.

Creating a SubDrawing

Create a new drawing using the File, New Widget menu option. Click on the SubDrawing From File
 button to create a subdrawing object. Define subdrawing’s position by clicking anywhere in the

drawing. A File Selection dialog comes up asking to specify a subdrawing’s filename. Enter icon.g
and click on OK to use the saved template drawing. Another dialog comes up, asking to enter
ObjectPath: enter IconGroup and press OK to use the IconGroup object from the template.

Bring the Properties dialog of the subdrawing object. Name it Icon and set its HasResources=YES.
Notice that the file subdrawing’s properties are very similar to those of the included subdrawing,
with an exception that Source=File, instead of Template, and the SourcePath defines a filename of
the subdrawing’s template.

The value of SourcePath is an absolute path from the File Selection dialog, and it is a good idea to
change it to a relative path, relative to the directory of the drawing. This makes the project’s
directory self-contained, with all connections between the files being preserved when the whole
directory is moved to another location or another machine. When SourcePath specifies a relative
path, the template drawing file (subdrawing) is searched for relative to the directory of the drawing
first, and then relative to the current directory. The GLG_PATH environment variable may also be
set to define a list of directories to search for subdrawing files.

Let’s remove the directory path portion of the SourcePath property, leaving only the icon.g
filename.

Click on the Edit Bindings button in the Properties dialog. Click on IconColor in the list of bindings
to select it and change its color to, let’s say, pink.

Shift+click on the subdrawing’s control point and name it Position. In an application, the
Icon/Position resource may be used to position the icon based on some values, for example latitude
and longitude of an airplane represented by the icon.

Like the included subdrawings, the file subdrawings’ instances are created dynamically during
hierarchy setup. The attribute settings of bound attributes are saved in the drawing, and Global
attributes are constrained among all instances of a subdrawing. Everything described above
regarding attribute settings for included subdrawings also applies to file subdrawings. The only
difference between an included subdrawing and a file subdrawing is that for an included
subdrawing a template is saved in the current drawing, while for a file subdrawing a template
is stored in a separate file that can be shared among multiple drawings.

94 GLG Builder and Animation Tutorial
The template of a file subdrawing is loaded at the drawing setup time. The template is then copied to create an
instance of it used for rendering an instance of the subdrawing. Before the hierarchy setup, the value of both the
Template and Instance resources of the file subdrawing object is null.

The subdrawing’s FixedSize attribute may be used to specify the subdrawing’s resize policy. If the
FixedSize is set to YES, the subdrawing will maintain a constant size when the drawing is zoomed
or resized, which may be used to create dynamic icons of a fixed size, as shown in the AirTraffic
Control and GIS demos.

Accessing the Subdrawing’s Template

In the Builder, the template drawing can be conveniently accessed by traversing down the
subdrawing object. With the Icon object still selected, click on the Hierarchy Down button, to go
down into the subdrawing’s template. It will automatically attempt to load the subdrawing’s
template drawing, icon.g. The Builder will display the File Selection dialog, asking for
confirmation to load this file. Press the OK button.

If desired, you can make changes to the template, or examine its objects and resources. For now,
let’s leave it the way it is and go up the hierarchy by clicking on the Hierarchy Up button. The File
Selection dialog is displayed again, asking for confirmation to save icon.g. You may press OK to
accept, or you may press Cancel to abort the save operation.

Since there were no changes, press Cancel, then press OK in the message dialog to confirm
discarding any changes.

Save the drawing as file_subdrawing.g.

Subdrawing File Dynamics

The file dynamics may be used to change the subdrawings template, so that different graphics is
displayed when the state of the object changes.

Let’s create another template drawing, so that we can alternate between two templates to see how
file dynamics work.

Load icon.g drawing using the File, Open menu option. Select IconGroup and go down into it using
the Hierarchy Down button. Click on the triangle to select the Polygon object and delete it using the
Cut button. Create a filled circle in place of the polygon using the Filled Circle button.
Bring its Properties dialog, name it Circle and leave its HasResources=NO. Go up the hierarchy, so
that the IconGroup group is selected again.

Save the drawing as icon2.g.

Let’s implement a file dynamics to alternate icon representation between the icon.g and icon2.g.
You may think of it as the icon having two states, one state is represented by icon.g, and the other
state is represented by icon2.g. The file dynamics is implemented by attaching a List transformation
to the subdrawing’s Source Path property.

Load the file_subdrawing.g drawing. Select the $Widget viewport and go down into it. Select the
Icon object and bring its Properties dialog.

GLG Builder and Animation Tutorial 95
In the Properties dialog, click on the ellipses button next to Source Path property to bring its
Attribute dialog. Click on the Add Dynamics button at the bottom of the dialog and select List. Close
the Properties dialog.

In the Edit Dynamics dialog for the list transformation, name the Value Index attribute IconState.
The value of IconState is an index in a list of items, in this case a list of filenames to be used to draw
the icon.

Click on the List Of Values button to display the list. In the List Dynamics dialog, select Item0 and
notice that its value in the Attribute dialog has been already set to icon.g.

Select Item1 from the list and set its value to icon2.g in the Value field of the Attribute dialog.

Close all dialogs and bring the resource browser for the Icon object. Select the IconState resource
and try alternating its value between 0 and 1. You’ll see that when IconState=0, the icon.g file is
used to represent the icon, and when IconState=1, the icon2.g file is used.

Save the drawing as file_subdrawing.g.

The file dynamics is similar to the image dynamics, used for image objects by applying a List
transformation to the Image File attribute. An important difference is that the image dynamics
switches static images, while the file dynamics switches dynamic graphical representations which
may be further modified (by changing color, angle, label, etc.) based on real-time data.

Object Dynamics

 As described in the previous chapter, file dynamics can be used to alternate the icon’s appearance
using different subdrawing files. While this is a powerful feature, its disadvantage is that a separate
file should be supplied for each icon representation.

The Toolkit provides an alternative feature of Object Dynamics, where all possible representations
of the icon are stored in a single drawing file.

Creating a Template with Multiple Icons

Let’s create a single template file that contains two versions of the icon: a triangle from the icon.g
file and a circle from the icon2.g file.

Open the icon2.g drawing using File, Open, select the IconGroup object and copy it by using either
the Edit, Copy menu option or the Copy toolbar button.

Open the icon.g file and paste previously copied object using either the Edit, Paste menu option or
the Paste toolbar button. Move the template with a circle so that it does not intersect the other
template with a triangle.

Select the IconGroup object with a circle, bring its Properties dialog and rename it to Icon2. Click
on the Select Next toolbar button and click on the circle to select the Circle object (this is a
shortcut to select individual objects in the group without going down into it).

96 GLG Builder and Animation Tutorial
The Shift+click on the control point in the center of the circle to brings its Control Point dialog and
name the point Anchor2. It will be used to define the icon’s attachment point in the center of the
circle.

Press the Escape key to get out of the group traversal mode.

Select the other IconGroup object containing a triangle. Bring its Properties dialog and rename it
to Icon1. Since the triangle does not have a control point in its center we could use to define the
icon’s anchor point, we need to create one. Create a marker object using the Marker button and
place it in the center of the triangle. Bring its Properties dialog and change its FillColor to red to
make the marker more visible. Shift+click on the control point of the marker object and name it
Anchor1 in the Control Point dialog.

The Anchor1 and Anchor2 points will be used as origins (anchor points) for positioning the Icon1
and Icon2 templates in the drawing. We used two different methods to define an origin point. For
Icon1, we created a marker object at the desired location and named its control point Anchor1. For
Icon2, we used the circle’s control point, naming it Anchor2, which will be visible as Icon2/Anchor2
resource.

We now have a composite template drawing, or a palette, containing multiple representations of an
icon: Icon1 and Icon2. Save the drawing as palette.g. Let’s now use it to create a subdrawing with
object dynamics.

Creating a Subdrawing

Create a new drawing using File, New Widget. Create a subdrawing object by clicking on the
Subdrawing From File button. Define the subdrawing’s position by clicking anywhere in the
drawing. In the File Selection dialog, select palette.g as a subdrawing file.

Type Icon1:Anchor1 in the Text Entry dialog for the ObjectPath and press OK. It directs the
subdrawing to render the Icon1 object of the template and anchor it using the Anchor1 point.

Shift+click on the control point of the subdrawing and name it Position in the Control Point dialog.
Click OK to close the dialog.

Bring the Properties dialog for the subdrawing object. Name it Airplane and set the
HasResources=YES. The subdrawing’s Source attribute is set to File, and its Source Path attribute
points to the palette.g file. Change the SourcePath property so that it has only a filename (palette.g),
without the directory path. Using a relative file name without the path makes it easier to move the
drawing to other machines and directories.

The subdrawing object with the file dynamics we created earlier in this chapter (file_subdrawing.g)
used several templates, each containing a single graphical representation of the icon. The new
subdrawing object we just created, Airplane, uses a template subdrawing (palette.g) which contains
multiple objects, or multiple representations of an icon.

GLG Builder and Animation Tutorial 97
Using ObjectPath for Object Dynamics

The ObjectPath property of the subdrawing object defines the name of an object in the template to
use as an Instance for rendering the subdrawing. It also defines (after a colon) a name of the anchor
point: this point of the template will be placed at the position of the subdrawing object’s control
point.

In our example, Icon1 is the object name (the resource path in the palette.g file) of the template
object to be used as a graphical representation for the Airplane subdrawing object. Anchor1 is the
resource path of the point to be used for “anchoring” the template object. This point will be placed
(mapped) at the location of the subdrawing’s Position point.

Now let’s add object dynamics. Click on the ellipsis button next to the ObjectPath attribute to bring
its Attribute dialog. Add List dynamics to the attribute by clicking on the Add Dynamics button and
selecting the List transformation.

In the Edit Dynamics dialog of the list transformation, name the ValueIndex attribute IconState: its
value will be used to select the list items. Click on the ellipsis button next to the List Of Values
attribute to display the list. Select the Item0 list item to bring its Attribute dialog and notice that its
value has been already set to Icon1:Anchor1.

Select the Item1 list entry and type Icon2:Icon2/Anchor2 in the value field of the Attribute dialog.
The Icon2 object and the Icon2/Anchor2 anchor point will be used to render the subdrawing when
the list item is selected. Close all dialogs.

With the Airplane object still selected, display its resources using the resource browser. Select the
IconState resource and alternate its value between 0 and 1: when IconState=0, the Icon1 object is
used to represent the icon, and when IconState=1, the Icon2 object with a circle is displayed. The
circular icon may be used when the airplane direction is not determined and there is no data to set
its Angle attribute.

Object dynamics is used to alter the icon’s appearance based on some value, indicating the icon’s
state. Object dynamics is implemented by attaching a list transformation to the ObjectPath attribute
of a subdrawing object. The SourcePath attribute should point to a template drawing file containing
multiple representations of the icon.

Unlike file dynamics, the object dynamics feature has an advantage of having a single drawing
file (a palette file) that contains all representation of an icon, as opposed to having a separate
file for each representation. The same palette file may be used across multiple drawings.

Save the drawing as subdr_path.g.

Palette SubDrawing

There is yet another type of a SubDrawing called a Palette SubDrawing which is a special case of
an included subdrawing that stores its included template in a different way.

98 GLG Builder and Animation Tutorial
In cases when a subdrawing is used to visualize icons of different types, the template will contain a
palette of icon shapes. An included subdrawing could be used to store the palette in the drawing in
cases when it is not desirable to keep it in a separate file. However, the palette used as a template of
an included subdrawing would not be visible at the top level of the drawing. A Palette SubDrawing
provides an alternative mechanism for storing the palette in the drawing in a way which makes it
easily accessible for editing even by users who are not familiar with the structure of the drawing.

Let’s create a palette subdrawing. Load the palette.g drawing. Create a group object enclosing both
Icon1 and Icon2. Make a copy of the group by using either the Edit, Copy menu option or the Copy

 toolbar button.

Create a new drawing using the File, New Widget. Go up the hierarchy, so that the $Widget viewport
is selected.

Create a new viewport object by clicking on the Viewport button and selecting two points in
the drawing to define its area. Bring the viewport’s Properties dialog, name it $Palette and set its
HasResources=YES. Close the Properties dialog.

$Palette is a predefined name, like $Drawing or $Widget. It is used as a default palette name when
Palette SubDrawing objects are created.

Use the Hierarchy Down button to go down into the $Palette viewport. Paste the previously copied
template group with Icon1 and Icon2 objects using either the Edit, Paste menu option or the Paste

 toolbar button. Explode the group by using the Explode button, as the group is no longer
needed.

Now we have a viewport named $Palette that contains two icon representations, Icon1 and Icon2.

Go up the hierarchy. Select the $Widget viewport and go down into it.

Create a Palette SubDrawing object by using the Object, Create, SubDrawing, SubDrawing From
Palette menu option.

Click anywhere in the drawing to define the subdrawing’s position. In the Text Entry dialog, type
Icon1:Anchor1 as the value of the ObjectPath and press OK.

A “Missing <$Palette> palette object” error will be generated, and an “Unresolved reference
object” text will be displayed in place of a newly created palette subdrawing. The error is generated
because the $Palette object is outside of the scope of the current drawing. Ignore the error and click
on the Hierarchy Up button to go to level where the palette object is visible. There will be no errors
and the palette subdrawing will be displayed properly, with a triangular icon and a label.

Click on Hierarchy Down again to go down into the $Widget viewport, and notice that the are no
errors: once the palette object is resolved, its location is remembered. Select the subdrawing and
bring its Properties dialog. Name the object Airplane and set its HasResources=YES. Notice that
its Source=Palette (as opposed to File) and the SourcePath is empty, causing the subdrawing to use
the default palette name: $Palette.

If the palette has a different name or located not at the top level of the drawing hierarchy, the SourcePath
attribute defines the palette path. For example, for a palette named MyPalette located inside the $Widget

GLG Builder and Animation Tutorial 99
viewport, the SourcePath may be set to $Widget/MyPalette. The palette resource path is resolved at the drawing
loading time, so it may be necessary to save and load the drawing back to get rid of the initial error when the
palette subdrawing is just created.

The value of the ObjectPath attribute of the palette subdrawing is Icon1:Anchor1. It may be
changed to Icon2:Icon2/Anchor2 to display the second icon type with a circle. List dynamics may
be attached to the attribute to switch icons based on the value of the list dynamic’s ValueIndex
attribute, as described in the Object Dynamics chapter above.

SubWindow Object

The SubWindow object is a special type of a subdrawing used to switch drawings displayed in the
SubWindow object. The SubWindow has two control points that define an area in which the template
drawing is displayed, and its template must be a viewport object.

The SubWindow object is created using the SubWindow From File button using steps similar
to the SubDrawing object. The only difference is that a subwindow uses two control points that
define the subwindow’s area, and its template must be a viewport. When prompted for a subwindow
drawing, enter a path to a drawing file to be displayed in the subwindow. If the drawing file contains
a viewport object named $Widget, ObjectPath may be left empty. If a different viewport name is
used, it should be defined when prompted for ObjectPath.

To switch the drawing displayed in a subwindow, change its SourcePath attribute to point to a
different drawing file.

The SubWindow may also be used as a subdrawing with two control points, which is useful for creating instances of
interface objects such as buttons and menus. If a button template changes, instances of the button in all drawings will
change as well. Bindings may be used to specify unique attribute values for each instance of the subwindow, such as a
button label or a custom action ID. After a subwindow is created, its attributes may be changed to include the template
instead of referencing a template in an external file.

Controlling Template Cache

The EnableCache attribute of the SubDrawing and SubWindow objects enables or disables a
template cache for subwindows and subdrawings that use a template stored in an external file. If set
to YES, the template is cached for reuse by subdrawings that use the same template file. Instead of
loading the template multiple times, each subdrawing creates a copy of the cached template.

If set to NO, template caching is disabled and each subdrawing or subwindow loads its own copy
of the template. It may be used to increase performance for subwindows that switch drawings: since
only one copy of the drawing is loaded into the subwindow, it is more efficient to load it directly
instead of loading it in the cache and then copying it to create a local copy of the template.

If EnableCache is set to NO, the CloneType attribute has no effect (attributes are not constrained). EnableCache has no
effect for subdrawings and subwindows that use an included or a palette template.

100 GLG Builder and Animation Tutorial

	GLG Builder and Animation Tutorial
	1. Using GLG Builder 9
	2. Advanced Features of the GLG Builder 63
	3. GLG Widgets and Custom Objects 70
	4. Using GLG Drawings in a Program 73
	5. Creating the Animation Example’s Drawing 77
	6. Using GLG Real-Time Charts 80
	7. Using Legacy GLG 2D and 3D Graph Widgets 83
	8. Using Containers and SubDrawing Objects 85

	Preface
	1. Using GLG Builder
	Using GLG drawings as widgets
	Creating a new widget
	Menu Options for Creating a New Widget

	Creating objects
	Editing GLG objects
	Selecting an Object and Changing Object Geometry
	Object Geometry and Coordinate Systems
	Choosing from Several Selected Objects
	Using Undo
	Editing Object Properties
	Editing objects with the Edit Toolbox
	Multiple Selection

	Editing Polygon Attributes
	FillColor and EdgeColor attributes
	LineWidth and LineType attribute
	FillType, OpenType and Shading attributes
	PointList attribute
	Rendering attributes

	Defining resources for animation
	Overview
	Using default attribute names for animation
	Prototyping Animation in the Builder
	Browsing Object Resources
	Assigning names to object attributes

	Creating Resource Hierarchy
	Dynamic Resource Hierarchy
	Using Multiple Component Instances
	Programming Example

	Using the Viewport Object
	Integrated Zooming and Panning
	Using GLG Widgets and Palettes
	Using Palettes
	Adding Widgets to a Drawing
	Adding Widgets to an Existing Drawing

	Editing Widgets
	Animating Widgets with Data Using Resources
	Code Sample to Animate Widgets Using Resources in the Program
	C#/.NET or Java
	C/C++
	JavaScript
	Prototyping Widgets in the Builder using Resources

	Animating Widgets with Data Using Tags
	Code Sample to Animate Widgets Using Tags in the Program
	C#/.NET or Java
	C/C++
	Prototyping Widgets in the Builder using Tags

	Tag Browser, Tag Object, TagName, TagSource and TagComment
	Custom Tag Data Browser
	Mapping Tags in an Application at Run-Time
	Loading Widget Drawings into the Builder
	Prototyping Widgets with Predefined Animation Commands
	Disabling Widget’s Interactive Behavior

	Saving the Drawing
	Adding Geometrical Dynamics
	Adding Attribute Dynamics
	Predefined Attribute Dynamics
	Using Stock Transformations
	Color dynamics
	Blinking
	Text dynamics
	Numerical text dynamics
	Formatted text dynamics
	List of strings dynamics
	Changing attribute range

	Editing Control Points and Attaching Control Point Dynamics
	Adding Extended Rendering Attributes
	Gradient Fill
	Fill Dynamics
	Shadows and Arrowheads
	Text Boxes

	Using permanent groups
	Creating a group
	Editing Individual Objects in a Group
	Editing All Objects in a Group
	Adding and Deleting Objects from a Group
	Exploding Permanent Groups

	Object Layout and Alignment
	Creating Layers of Objects

	2. Advanced Features of the GLG Builder
	Using Constraints
	Constraining Object Attributes
	Using Constrained Dynamics and Marked Transformations
	Constrained Dynamics Example
	Using Marked Transformations

	The Second Flavor of the Fill Dynamics
	Defining Object Tooltips
	Using MouseOver Highlight and MouseClick Feedback
	Attaching Custom Events and Commands
	Using Editing Focus
	Changing Viewport’s Font Tables

	3. GLG Widgets and Custom Objects
	Using Custom Object Palette
	Custom Button
	Custom Toggle
	Native Button Object
	Native Toggle Object
	Native Slider Objects
	3D Objects
	Process Control Objects
	Graph and Real-Time Chart Objects
	Adding New Objects to the Custom Object Palette

	4. Using GLG Drawings in a Program
	Loading a Drawing into a C or C++ Program
	Loading a Drawing into a Java Program
	Loading a Drawing into a C#/.NET Program or GLG .NET Control
	Loading a Drawing into an ActiveX Control
	Loading a Drawing into a JavaScript Program Deployed on a Web Page
	Supplying Data for Animation from a Program
	Source Code Examples

	5. Creating the Animation Example’s Drawing
	Creating a Drawing’s Viewport
	Creating a Circle Object
	Adding Color Dynamics
	Adding the Move Dynamics
	Creating an Area Polygon
	Adding Buttons
	Testing the Tooltips
	Using the Drawing

	6. Using GLG Real-Time Charts
	Editing Chart Properties in the Builder
	Loading Charts into the Builder
	Editing Chart Properties
	Editing Chart Plots and Axes
	Properties for Supplying Chart Data

	Editing Charts Using Resources
	Prototyping the Chart’s Run-Time Behavior

	7. Using Legacy GLG 2D and 3D Graph Widgets
	Loading Graph Widgets into the Builder
	Common Graph Resources
	Data Supply Resources
	Title resources:
	DataGroup Resources:
	Axis Label Resources

	Graphs with Multiple Data Groups
	Graph Widget Animation Examples

	8. Using Containers and SubDrawing Objects
	Container Object
	Creating a Template
	Creating a Container Object
	Creating Container Instances
	Editing Container’s Template

	SubDrawing Object
	Included SubDrawing
	Reusing a Template from the Previous Example
	Creating a SubDrawing
	Creating SubDrawing Instances and Editing the Template
	Fixed Size SubDrawings
	Rebinding Attributes of a SubDrawing
	Using Global Attributes
	Object Dynamics

	File SubDrawing
	Reusing a Template
	Creating a SubDrawing
	Accessing the Subdrawing’s Template

	Subdrawing File Dynamics
	Object Dynamics
	Creating a Template with Multiple Icons
	Creating a Subdrawing
	Using ObjectPath for Object Dynamics

	Palette SubDrawing
	SubWindow Object
	Controlling Template Cache

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

